
Chapter 1

Quantum Computing Basics and

Concepts

1.1 Introduction

This book is for researchers and students of computational intelligence as well as for
engineers interested in designing quantum algorithms in the circuit representation.
The content of this book is presented as a set of design methods of quantum circuits
with the focus on evolutionary algorithm; however some heuristic algborithms as
well as a wide range of application of quantum circuits are provided.

The general idea behind this book is to represent every computational problem
as a quantum circuit and then to use some classical synthesis approach to design
the circuit. The goal of such approach is to describe and illustrate the use of clas-
sical design methods and their extension into quantum logic synthesis. The reason
of using the circuit representation is that in classical logic synthesis various algo-
rithms exist for the design of both combinatorial and sequential circuits and thus
designing quantum algorithms in the circuit representation provides a good basis
for comparison. Moreover the circuit representation is one that is the most explicit;
at the same time it provides a good visual representation as well as it also allows a
direct formalization and generalization of principles of both quantum computation
and circuit design.

We know that Quantum Computation relies on quantum mechanics which is a
mathematical model that describes the evolution of physical realization of computa-
tion and hence the computer itself. Several philosophically different but physically
equivalent formulations have been found for quantum mechanics [Sty02]. In this
book , we follow Schrödinger [Sch26] which describes the physical state of a quan-

1

2 CHAPTER 1. QUANTUM COMPUTING BASICS AND CONCEPTS

tum system by a temporally evolving vector |φ〉 in a complete complex inner product
space H called a Hilbert space. The time evolution under the influence of a single
term of the Hamiltonian is a single physical operation and in this book we will be de-
signing and optimizing circuits at the level of such operations (pulses). (Hamiltonian
is a physical state of a system which is observable corresponding to the total energy
of the system. Hence it is bounded for finite dimensional spaces and in the case of
infinite dimensional spaces, it is always unbounded and not defined everywhere).

The interesting fact about this book is the unified approach; in this book we
use solely circuit representation (either direct such as wires and functions or more
sophisticated representation such as a Reed-Muller form) to design logic circuuits,
sequential machines or robot controllers for motion or machine learning. The tar-
get of all these circuits is to provide examples of application of quantum circuits
and hopefully also show theri superiority over the classical circuits of the current
technology.

Because this book is devoted to the computational aspects of designing quan-
tum computers, quantum algorithms and quantum computational intelligence, one
may ask ”Why quantum computers are of interest and why are they more powerful
than standard computers when used to solve problems in computational intelli-
gence?” This is question is the main motivation for this introductory Chapter where
the quantum computing is explained starting from its hisotrical context and ending
in a description of quantum circuits and some of their properties.

1.2 Why quantum computing?

Quantum Mechanics (QM) describes the behavior and properties of elementary
particles (EP) such as electrons or photons on the atomic and subatomic levels.
Formulated in the first half of the 20th century mainly by Schrödinger [Sch26],
Bohr [Boh08], Heisenberg [Cas] and Dirac [Dir95], it was only in the late 70’s that
quantum information processing systems has been proposed [Pop75, Ing76,Man80].
Even later, in the 80’s of the last century it was Feynman who proposed the first
physical realization of a Quantum Computer [Fey85]. In parallel to Feynman, Be-
nioff [Ben82] also was one of the first researchers to formulate the principles of
quantum computing and Deutsch proposed the first Quantum Algorithm [Deu85].
The reason that these concepts are becoming of interest to computer engineering
community is mainly due to the Moore’s law [Moo65]; that is: the number of transis-
tors in a chip doubles every 18 months and the size of gates is constantly shrinking.
Consequently problems such as heat dissipation and information loss are becoming
very important for current and future technologies. Improving the scale of transis-
tors ultimately leads to a technology working on the level of elementary particles

1.2. WHY QUANTUM COMPUTING? 3

(EP) such as a single electron or photon. Since Moore’s paper the progress led to
the current 35 nm (3.5 ∗ 10−10m) circuit technology which considering the size of an
atom (approximately 10−10m) is relatively close to the atomic size. Consequently
the exploration of QM and its related Quantum Computing becomes very impor-
tant to the development of logic design of future devices and in consequence to the
development of quantum algorithms, quantum CAD and quantum logic synthesis
and architecture methodologies and theories. Because of their superior performance
and specific problem-related attributes, quantum computers will be predominantly
used in computational intelligence and robotics, and similarly to classical computers
they will ultimately enter every area of technology and day-to-day life.

Despite the fact of being based on paradoxical principles, QM has found applications
in almost all fields of scientific research and technology. Yet the most important
theoretical and in the future also practical innovations were done in the field of
Quantum computing, quantum information, and quantum circuits design [BBC+95,
SD96].

Although only theoretical concepts of implementation of complete quantum com-
puter architectures have been proposed [BBC+95,Fey85,Ben82,Deu85] the contin-
uous progresses in technology will allow the construction of Quantum Comput-
ers in close future, perhaps in the interval of 10 to 50 years. Recent progress
in implementation and architectures proove that this area is just at its begining
and is gorwing. For instance the implementation of small quantum logic opera-
tions with trapped atoms or ions [BBC+95, NC00, CZ95, DKK03, PW02] are the
indication that this time-frame of close future can be potentially reduced to only
a few years before the first fully quantum computer is constructed. The largest
up to date implementation of quantum computer is the adiabatic computer by
DWAVE [AOR+02, AS04, vdPIG+06, ALT08, HJL+10]. Although up to now it is
still an open issue whether the DWAVE computer is a proper quantum computer
or not [], it provides consideerable speed up over classical computer in the SAT
implementation and int the Random Number Generation []. In parallel to the
adiabatic quantum computer, architectures for full quantum computers have been
proposed [MOC02, SO02, MC]. In these proposals the quantum computations is
implemented over a set of flying-photons that represents the degree of freedom of
interactions between qubits. Such architectures however have not been implemented
as of yet.

This chapter presents the basic concepts of quantum computing as well as the tran-
sition from quantum physics to quantum computing. We also introduce quantum
computing models, necessary to understand our concepts of quantum logic, quan-
tum computing and synthesis of quantum logic circuits. The Section 1.3 introduces
some mathematical concepts and theories required for the understanding of quan-
tum computing. Section 1.4 second section presents a historical overview of the

4 CHAPTER 1. QUANTUM COMPUTING BASICS AND CONCEPTS

quantum mechanical theory and Section 1.5 presents the transition from quantum
mechanics to quantum logic circuits and quantum computation.

1.3 Mathematical Preliminaries to Quantum Com-

puting

According to [Dir84] each physical system is associated with a separate Hilbert
space H. An H space is an inner product vector space where the unit-vectors are the
possible states of the system. An inner product for a vector space is defined by the
following formula:

(1.1) 〈x, y〉 =
∑

k

x∗kyk

where x and y are two vectors defined on H and x∗ denotes a complex conjugate
of x. For quantum computation it is important to introduce the orthonormal basis
on H, in particular considering the 1

2
-spin quantum system that is described by two

orthonormal basis states. An orthonormal set of vectors M in H is such that every
element of M is a unit vector (vector of length one) and any two distinct elements
are orthogonal.

Example 1.3.0.1 Orthonormal basis set

An orthonormal basis set can be defined such as: {(1, 0, 0)T , (0, 1, 0)T , (0, 0, 1)T}. In
this space, a linear operator A represented by a matrix A transforms an input vector
v to an output vector w such as w = Av .

1.3.1 Bra-Ket notation

One of the notations used in Quantum Computing is the bra-ket notation introduced
by Dirac [Dir84]. Is it used to represent the operators and vectors; each expression
has two parts, a bra and a ket. Each vector in the H space is a ket |Φ〉 and its
conjugate transpose is bra 〈Ψ|. The application of bra to ket results in the bra-ket
notation 〈|〉. In the bra-ket notation, the inner product is represented by 〈ψm|ψn〉 =
1, for n = m. By inverting the order and performing the ket-bra multipolication
the outer product is obtained; it is given by |ψm〉〈ψn|.

The information in quantum computation is represented by a qubit that in the
Dirac notation can be written in the form of a characteristic equation. For instance
a qubit with two possible orthonormal states |0〉 and |1〉 is described by eq. 1.2. The

1.3. MATHEMATICAL PRELIMINARIES TO QUANTUM COMPUTING 5

deeper meaning of this equation will be explained in Section 1.5 of this chapter.

(1.2) |φ〉 = α |0〉+ β |1〉

1.3.2 Heisenberg Notation

In general, to describe basis states of a Quantum System, the Dirac notation is
preferred to the vector based Heisenberg notation. This is mainly because the Dirac
notation is much more practical than the Heisenberg notation for proving facts in
Quantum Computing (Heisenberg notation is useful in computer calculations). How-
ever, the heinsenberg notation is much more explicit when one attempts to clearly
explain the principles of quantum computations. Let the orthonormal quantum
states be represented in the vector notation (Heisenberg notation) eq. 1.3.

| ↑〉 = |0〉 =

[

1
0

]

| ↓〉 = |1〉 =

[

0
1

](1.3)

1.3.3 Matrix Product

The multiplication of matrix A by vector v is defined be the following equation:

(1.4) w[r] =
∑

c

A[r, c] ∗ v[c]

where r is the index of rows and c is the index of columns of the matrix. Such
operator is bounded; it maps bounded sets to bounded sets.

From the equation (1.4) it follows that A is a projection, thus 〈Av|v〉 = ||Av||2 is
called the l2-norm and measures the distance between the original vector v and the
resulting vector Av. The A operator is called Hermitian if its hermitian conjugate
A† (conjugate transpose) satisfies A† = A and a further extension of this property
yields a unitary operator A. Such unitary operator is invertible and its inverse is
given by its conjugate transpose A† (also called Hermitian adjoint): A†A = AA† = I.

As will be seen in Section 1.5.2, all quantum events must be measured and all mea-
surements are of a probabilistic nature. The inputs and the outputs to a quantum
computational system are binary events (vectors) with probabilities in interval {0,
1} and the range of a projection is closed by A. The l2-norm of a projection of the
vector v by A can be interpreted as a probability that a measurement will observe

6 CHAPTER 1. QUANTUM COMPUTING BASICS AND CONCEPTS

the system in the state represented by Av. The overall process of the input state
being evolved and measured can be seen as a vector-matrix multiplication. The
interested reader can find more information about the Hilbert space and quantum-
probabilistic systems in [WG98,HSY+04,YHSP05].

In the above introduced dirac notation eq. 1.4 is rewriten to:

(1.5) |w〉 = A |v〉

Observe the introduction of the bra-ket notation considerably simplified eq. 1.4.

1.3.4 Kronecker Product

The combination of qubits into a multi-qubit system is mathematically given by the
Kronecker multiplications; for a two-qubit system we obtain (using the Kronecker
product [Gru99,Gra81,NC00]) the states represented in eq. 1.6:

(1.6)

|00〉 =
[

1
0

]

⊗
[

1
0

]

=

1
0
0
0

|10〉 =

[

0
1

]

⊗
[

1
0

]

=

0
0
1
0

|01〉 =
[

1
0

]

⊗
[

0
1

]

=

0
1
0
0

|11〉 =

[

0
1

]

⊗
[

0
1

]

=

0
0
0
1

Similarly for Operators, the Kronecker product exponentially increases the
dimension of the space:

W ⊗H =

[

1 0
0 1

]

⊗ 1√
2

[

1 1
1 −1

]

=
1√
2

1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

(1.7)

This operation is shown in Figure 1.1.

Assume that qubit a (with possible states |0〉 and |1〉) is represented by |Ψa〉 =
αa|0〉 + βa|1〉 and qubit b is represented by |Ψb〉 = αb|0〉 + βb|1〉 . Each of them is
represented by the superposition of their basis states, but put together the charac-
teristic wave function of their combined states will be:

1.3. MATHEMATICAL PRELIMINARIES TO QUANTUM COMPUTING 7

H

Figure 1.1: Circuit representing the W ⊗H operation

|ΨaΨb〉 = αaαb|00〉+ αaβb|01〉
+ βaαb|10〉+ βaβb|11〉(1.8)

with αa and βb being the complex amplitudes of states of each EP respectively. As
shown before, the calculations of the composed state are achieved via the Kronecker
multiplication operator. Hence come the quantum memories with extremely large
capacities mentioned earlier and the requirement for efficient methods to calculate
such large matrices.

1.3.5 Matrix Trace

A trace of a matrix is defined as tra(U) =
∑

iDii and as it will be seen the concept
of trace is used in the measurement operation in quantum computing. In particular
it is required when dealing with ensemble systems [CFH97, NC00] and estimating
their state. Such systems are represented by density matrices of the form:

(1.9) ρ =
2n
∑

i

αi|ψi〉〈ψi|α∗
i =

2n
∑

i

pi|ψi〉〈ψi|

with
∑2n

i pi = 1, α being the complex coefficient such that |αi|2 = pi.

The trace operator represents the possible observable states of a quantum system.
Any quantum state |φ〉 when observed collapses according to the applied measure-
ment resulting in α|φ〉 → p|φ〉〈φ|, with p being the probability of observing the state
|φ〉 from the set of all possible output states. Thus representing the overall state of
a quantum system can be represented as the trace

∑2n

i=0 pi|i〉〈i| with pi being the
probability of observing the state |i〉.

8 CHAPTER 1. QUANTUM COMPUTING BASICS AND CONCEPTS

1.4 Quantum Mechanics

1.4.1 Bohr Particle Model

The term ”quantum” describes the fact that the EP’s can be observed (measured)
only in distinct energetic states and while moving from one state to another a quan-
tified amount of energy is either emitted or absorbed. A closer look at the Bohr
model of the atom will explain these notions even more. The example we are using
here is based on the simplest of all atoms, the Hydrogen (H) atom. As all atoms, the
Hydrogen atom (H) is composed of a nucleus and electrons orbiting around it, but
H has only one electron (e). The electron can be only on orbits of certain allowed
radii. When e is on the orbit that is closest to the nucleus then the atom is in the
”ground state”.

The electron can change orbits; going from a lower orbit to a higher one requires
absorption of some energy and leaving an orbit for a lower one is characterized by
emitting a quantum of energy from the electron. The energy levels that the electron
can visit are characterized by the following equation:

(1.10) En = (Rh)

(

1

n2

)

where Rh is the so-called Rydberg constant (2.18 ∗ 10−18J) and n is the principle
quantum number corresponding to different allowed orbits of the electron. The
difference of energy E associated with ”orbits-jumping” can be expressed as the
difference between the energy of the electron on the initial Ei and the final Ef orbit:

(1.11) ∆E = Ef − Ei

Max Planck has deduced that the energy of electrons comprising the electro-magnetic
radiation is a function of frequency, from where his famous formula comes:

(1.12) ∆E = hν = −Rh

(

1

n2
f

− 1

n2
i

)

where h is the Planck constant (6.63 x 10-34 Js) and v is the frequency of the emitted
light (Figure 1.2).

1.4. QUANTUM MECHANICS 9

Figure 1.2: Bohr model of the atom (nucleus, orbiting electrons). Shown are light
colors respective to the electron orbit transitions.

1.4.2 Quantum Model of Elementary Particle

This brief look into the physical background should be completed by the fact that
Bohr’s model of atom assumed that the electron is orbiting the nucleus similarly
the Earth is orbiting around the Sun, which violates the Heisenberg uncertainty
principle of Quantum Mechanics [Cas]. This principle states that the position and
the momentum of an EP cannot be simultaneously determined with certainty. In
particular in quantum mechanics, any elementary particle has the property that the
root-mean-square deviation of the position x from the mean ∆x =

√

〈x2〉 − 〈x〉2
(where 〈·〉 represents x ∗ x∗) and root-mean-square of the momentum p from the
mean ∆p =

√

〈p2〉 − 〈p〉2 multiplied together is never smaller than ~

2
. This is also

expressed by the commutator:

(1.13) [x, p] = iℏ

The introduction of these unusual properties was required to correctly describe the
QM system (sometimes also referenced as a ”failure” of the classical Bayesian statis-
tics [You95]) and to allow predicting states of Physical Quantum Systems.

Example 1.4.2.1 Two-Slit experiment

In the two-slit experiment, the dual nature of EP was shown. The experiment
consists of the emitter (device firing EP on a screen), of the screen with two holes
and of the detector. Figure 1.5 illustrates the experimental setting. The system

10 CHAPTER 1. QUANTUM COMPUTING BASICS AND CONCEPTS

Figure 1.3: The measured number of electrons on the detector screen with top slit
or the bottom slit open (thin lines). The expected probability when both slits are
open (thick line).

is setup so that the electrons detected by the detector have to travel through the
open holes (the screen is thick enough to stop the electrons completely). When
only one of the two slits is open and the observer looks at (measures) the projection
of fired particles on the detector, the distribution of their locations is proportional
to a linear trajectory through the opened slit (photons behave like particle). The
paradox shows up when both the slits are opened.

Figure 1.3 shows the detection screen and the number of electrons measured when
either the top or the bottom slit is open. Two curves show the distribution of
particles on the detector screen either with top or with the bottom slit open. The
thick curve is an expectation of what should be the particle distribution with both
slits opened based on the classical probability theory. What appears to be a classical
probabilistic distribution of particles with only one of both slits open, is transformed
to an interference pattern with both slits open (Figure 1.4), not obtainable using
classical statistics.

When this measurement was made the problem was to interpret it and to decide
whereas EP’s travel in space on a straight line (as particles) or if they have wave
properties. The problem was to determine how an EP (electron or photon) has
the particle characteristics (mass and speed) when measured and could behave as a
wave at the same time? The dual nature problem is solved by the supposition that
the EP is a particle while the measurement is performed, and the EP behaves like
a wave while not.

According to Figure 1.5 it is not possible to decide whereas a particle traveled
through one, two or both slits simultaneously because the measurement does not
allow determining it. If a measurement of particles is done on the screen, the result

1.4. QUANTUM MECHANICS 11

Figure 1.4: Results of measurement of particles position when both slits of the screen
are open.

Figure 1.5: Schematic representation of the two-slit experiment. Left is the emitter
and on the right is the detector (film). In the middle is the barrier with two holes.

12 CHAPTER 1. QUANTUM COMPUTING BASICS AND CONCEPTS

will yield 50% of particles through left slit and 50% through the right slit. The
consequence of these observations is the fact that while recording probabilities of
detecting an electron in the interference pattern, the probabilities of observation of
a given state can be smaller than in the standard Bayesian probabilistic model! This
implies the following contradictory equation 1.14 [You95].

(1.14) P (x) = P (x|slit1) + P (x|slit2) ≤ P (x|slit1)

where P(x) is the probability of measuring a particle on position x. The solution
to this problem was the introduction of the concept of the complex probability
amplitudes because such amplitudes can cancel each other. The system describe by
eq. 1.14 is then mathematically a set of functions mapping real physical states from
Hilbert space H into a complex space C:

(1.15) Ψ : S → C

where S is the physical space of states and C is complex vector space, respectively.
As will be seen later, the functions from the set described by eq. 1.15 are the wave
functions that represent non-trivial states of the quantum system. This state of
a particle traveling through both slits is defined as the ”superposed” state of the
system. For one-particle system this superposition is a result of all its possible
states that it is measured for. Its complex probability amplitude α is related to the
classical probability p of measuring this system in a particular state by |α|2 = p. In
a system of n particles (called also the quantum register), the system constitutes a
superposition of m ∗ n states where m is the number of states of each elementary
unit of this system.

1.4.3 Schrödinger equation

The general solution for quantum mechanical events is given by the Schrödinger
equation:

(1.16) iℏ
d|ψ〉
dt

= H|ψ〉

with ℏ being the Planck constant [Pla] and H being the Hamiltonian of the system.
A Hamiltonian represents the observable corresponding to the total energy of the

1.4. QUANTUM MECHANICS 13

system. In particular, the possible observable states are represented by the spectrum
of the Hamiltonian [Dir84]. This general equation describes the natural evolution
of a quantum system. The ℏ constant can be absorbed into the Hamiltonian H.
The Hamiltonian H can for example represent a particle that exists in the infinite
one-dimensional potential such as the Simple Harmonic Oscillator (SHO) [MV76]

model with Hamiltonian H = p2

2m
+ 1

2
mω2x2 where p is the momentum, m is the

mass, x is the position and ω is the angular velocity. The Schrödinger equation for
SHO takes the form of:

(1.17)
−ℏ

2m

d2ψn(x)

dx2
+

1

2
βx2ψn(x) = Eψn(x)

where V (x) = 1
2
βx2 is the potential well with ω =

√

β
m

(and β being the spring

constant). In general the solution that one obtains when solving for physical systems
is a solution to eq. 1.16 which is of the form:

(1.18) |ψ(t)〉 = e−iHt/ℏ|ψ(0)〉

or more clearly as

(1.19) |ψ(t)〉 = e−inωt|ψ(0)〉

with ω being the angular frequency and n being the index of distinct non-degenerate
quantum states. From the eq. 1.19 and with respect to previous stipulations (or
postulates of quantum mechanics) it can be observed that the resulting state is a
distribution of corresponding probabilities pn over the set of eigenstates n [MV76].
For more details, this particular problem has all solutions represented by Hermite
polynomials [MV76,Wey32], however it is not the focus of this book.

1.4.4 Superposition of quantum states

The previous descriptions introduced a very unique phenomena: while a particle
behaves as a wave it can be simulateneously in various basis states but when it is
measured (as in the two-slit experiment) the basis state reveals it self a physically
observable unique state. The state illustrated by eq. 1.19 is also called the quantum
supperposition of states because a single physical particle contains a multitude of

14 CHAPTER 1. QUANTUM COMPUTING BASICS AND CONCEPTS

observable staes that have a finite probability to collapse onto the orthonormal bases
states. A more understandable explanation is to represent the quantum state as a
state that is build of component observable states (with particular probabilities)
and that when observed will be seen as one of the observables with the associated
probability.

Let’s illustrate the superposition phenomena by work done in [MMKW96]. In
this experiment described is the creation of a ”Schrödinger cat” state of an atom.
The ”Gedankenexperiment” of Schrödinger was to place a living cat into a super-
position of being alive and dead. These superposed states in QM are described by
a wave function. The cat state can be described in these terms as follows:

(1.20) |Ψ〉 =
| ↑〉+ | ↓〉√

2

where | ↑〉 and ↓〉 refer to the states of a living and dead cat, respectively. Once again
this situation is not ”realistic” in our macro-world, however appropriate for the QM.
The interpretation of the general equation 1.20 is that for each measurement of the
system described by it there is 50% chance to find the system in state | ↓〉 and a 50%
chance to find the system in state | ↑〉. This can be formalized in Dirac’s notation
as:

Ψ = α| ↑〉+ β| ↓〉(1.21)

=
1√
2
| ↑〉+ 1√

2
| ↓〉(1.22)

with

|α|2 + |β|2 = 1(1.23)

Where α and β are in general complex amplitudes associated with each measured
state, and |α|2 = αα∗ where α∗ = (a + ib)∗ = (a− ib) is a complex conjugate of α.
Thus both states | ↑〉 and | ↓〉 will be observed when measured with probabilities |α2|
and |β2| respectively. This interpretation of the system defined by (1.22), shows that
any quantum system can be represented by a wave function describing all possible
states of the system (here we assume two orthonormal states | ↓〉 and | ↑〉) by using
complex probabilities (here α and β). The complex probabilities are restricted only
by the second equation in (1.23), and the observables of this quantum system are
valued in the range of {0, 1}.

1.4. QUANTUM MECHANICS 15

Figure 1.6: The Bloch sphere

The above representation is another notation of a Euler parametrized 3D ro-
tation. The general state of a qubit rotation is given in eq. 1.24. Observe how
demonstrated in this equation, a global phase eiρ is visible, but in general it is
ignored during the computation with qubits as it can be easily factored out and
moreover, upon measurement it is completely destroyed.

(1.24) |ψ〉 = eiρcos
θ

2
|0〉+ ei(ρ+φ)sin

θ

2
|1〉 = R(ρ, φ, θ) = eiρ

(

cos θ
2
−e−iφsinθ

2

eiφsinθ
2

cos θ
2

)

The equation 1.24 is more clearly visualized on a sphere, commonly known as
the Bloch sphere. This representation is usefull situated to show the state of a single
qubit but does not allow to represent multiple qubits due to entanglement and the
supperposition. The Bloch sphere is shown in Figure 1.6.

Now, stepping back to [You95], if instead of a cat we consider some of alkali-like ions
such as 40Ca+, 24Mg+ or 198Hg+ which do not have a third electronic ground state
available for the auxiliary level (thus can be directly used for quantum permutative
computing) [MMKW96], the equations (1.22) and (1.23) would represent the wave
function of an ion where | ↓〉 and | ↑〉 are two distinct energetic states.

As mentioned earlier in this section (and as will also be seen in Section 1.5), opera-
tions on single trapped ions have been already implemented [MMK+95,MMKW96,
MML+98, WMI+05]. This technique consists in trapping in an Electro-Magnetic
field one or more ions and using laser beams setting these ions into certain states.
Applying a well-determined sequence of laser pulses on particular ions in the trap,
one can achieve such gates as NOT (an inverter of classical logic design). Again the
setting of ions is represented by jumps of electron on their orbits and emitting or ab-
sorbing quanta of energy. It also allows realizing one-qubit, two-qubit or even three

16 CHAPTER 1. QUANTUM COMPUTING BASICS AND CONCEPTS

qubit gates. However, no large-scale quantum computer was yet experimentally
created using ion-traps.

1.5 From Quantum Mechanics to Quantum Logic

In the Section 1.4, the example of implementation of a quantum computer was
mentioned: the trapped ions in the EM field interacting with laser beams. This
has for consequence the changes of states of the ions such as moving from ground
state to an excited state by an electron jump from a lower orbit to a higher one.
But electrons are more complicated than just quantum energy collectors and their
wave functions are more complex because they depend on three parameters beside
the principle quantum numbers; the orbital quantum number ”l”, the magnetic
quantum number ”m” and the spin ”S”. While parameters l and m determine
the angular dependence, the S determines the internal electron rotation. For our
explanation it is only important to know that the S number is often used to represent
basis states in a Quantum Computation because the hydrogen atom can have only
two values ±1

2
of spin. Consequently, using spin rotations for the basis implies to

work directly with the two-valued (binary)quantum logic. Now, considering the spin
S value as the basis, a quantum operator on an atom will result in a rotation of the
electron spin. Consequently all single qubit operations can be expressed as rotations
by certain angles [NC00].

Moreover to build a quantum computer a multi-qubit system (also called quantum
register) requires to be defined and analyzed. Beside the quantum register definition
addtional operations such as measurement have to be explained.

1.5.1 Multi-Qubit System

To illustrate these important properties let’s have a look on a more complicated
system with two quantum particles a and b represented by |ψa〉 = α0|0〉+ βa|1〉 and
|ψb〉 = αb|0〉 + βb|1〉 respectively. For such a system the problem space increases
exponentially and is represented using the Kronecker product [Gru99].

(1.25) |ψa〉 ⊗ |ψb〉 =

[

α0

β0

]

⊗
[

α1

β1

]

=

α0α1

α0β1

β0α1

β0β1

Thus the resulting system is represented by |ψaψb〉 = αaαb|00〉+αaβb|01〉+βaαb|10〉+
βaβb|11〉 (1.8) where the double coefficients obey the unity(completeness) rule and

1.5. FROM QUANTUM MECHANICS TO QUANTUM LOGIC 17

each of their square powers represents the probability to measure the corresponding
state. The superposition means that the quantum system is or can be in any or
all the states at the same time. This superposition potentially gives the massive
parallel computational power to quantum computing.

Anoterh property of the multi-qubit register is the multi-qubit superposition.
Assume a system with n qubits. A classical register represents 2n distinct states while
the quantum system is an arbitrary superposition of these 2n states. Practically it
means that while not measured the system can be in one, two, three ... or all of the
2n states at the same time!

1.5.2 Simple Projective Measurement

As the states of qubits are vectors with complex coefficients, the real (Boolean) logic
state (also called the observable) is obtained by measuring the system and observing
the result. The measurement process projects the measured qubit onto the set of
real valued observables. In other words a quantum system is described by a set of
filters, each letting through and capturing a particular state. As will be seen later
in Chapter ??, for logic design this implies that not only one can measure for a set
of observables to design a function but also one can use various sets of observables
in order to obtain different functions.

Definition 1.5.1 (Projective measurement). The measurement of a single binary
qubit is described by the overall probability of observing both orthonormal states given
by p(0) + p(1) = 1. Thus, in a more general way, any (1

2
- spin) quantum system is

described by:

p(m) =
∑

n

〈Ψ|M †
nMn|Ψ〉(1.26)

where p(m) is the probability to measure value m, Ψ is the wave representation of
the circuit and Mn is the measurement operator for the value n. From the above it
is simple to derive the complete description of a single-qubit circuit as:

p(0) + p(1) = 〈Ψ|M †
0M0|Ψ〉+ 〈Ψ|M †

1M1|Ψ〉 = 1(1.27)

where

(1.28) M0 =

[

1
0

]

[1 0] =

[

1 0
0 0

]

and M1 =

[

0
1

]

[0 1] =

[

0 0
0 1

]

18 CHAPTER 1. QUANTUM COMPUTING BASICS AND CONCEPTS

and where M †
0 and M †

1 are respective Hermitian conjugates of M0 and M1. Because

(1.29) M †
0M0 +M †

1M1 =

[

1 0
0 1

]

= I

, and the measurement given by M =
∑

kMk = M0 +M1 (representing all possible
outcome values) describes the quantum system completely.

Similarly to the single qubit measurement the two qubit measurement oper-
ation can be designed from single qubit measurments. To start, one can look at
the single qubit measurements on a two qubit register. Equation 1.30 shows the
measurement of a two qubit system for the |01〉 state.

(1.30) M|01〉 =

(

1 0
0 0

)

⊗
(

0 0
0 1

)

=

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

Similarly, to the described trace operation in Section 1.3 one can measure only
a sub-part of a quantum register. Thus to measure a single qubit of a two qubit
system, the un-measured qubit is transformed using an identy operation and thus:

(1.31) M|1−〉 =

(

0 0
0 1

)

⊗
(

1 0
0 1

)

=

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

Eq. 1.31 shows that similarly to the trace operation, in order to obtain from
a two qubit system a single qubit state, the other qubit has to be measured. The
result of this oepration is that starting from a quantum state |ab〉 and measuring
then qubit b, the result is the quantum state of the qubit a.

Example 1.5.2.1 Entanglement

Assume the above two-particle vector is transformed using the quantum circuit from
Figure 1.7.

This circuit executes first a Hadamard transform on the top qubit and then a
Controlled Not operation with the bottom qubit as the target. Depending on
the initial state of the quantum register the output will be either |φ〉 = |ab〉 =
αaαb|00〉 ± |βaβb|11〉 or |φ〉 = |ab〉 = αaβb|01〉 ± |βaαb|10〉. Thus it is not possible to
estimate with 100% probability the initial state of the quantum register.

1.5. FROM QUANTUM MECHANICS TO QUANTUM LOGIC 19

H M

qubit - b

qubit - a

dcba

|a〉

|b〉

Figure 1.7: EPR producing circuit

Let |ab〉 = |00〉 at level a (Figure 1.7). The first step is to apply the [H] gate on the
qubit-a and the resulting state at level b of the circuit is

|ab〉 → (H ⊗W)|ab〉

=
1√
2
(|0〉+ |1〉)|0〉

=
1√
2
(|00〉+ |10〉) =

1√
2

0
1√
2

0

(1.32)

Next the application of the CNOT gate results in:

(1.33) |ab〉 =
1√
2

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

×

1
0
1
0

=
1√
2

1
0
0
1

=
1√
2
(|00〉+ |11〉)

For an output 0 (on the qubit-a), the projective measurement of the first (topmost)
qubit (qubit-a on Figure 1.7) on this stage would collapse the global state (with a
single measurement) to the state |00〉:

(1.34) |ab〉 → M0|ab〉
√

〈ab|M †
0M0|ab〉

=
[

1 0 0 0
]T

= |00〉

with

20 CHAPTER 1. QUANTUM COMPUTING BASICS AND CONCEPTS

(1.35) M0−|ab〉 =
1√
2

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

1
0
0
1

=
1√
2

1
0
0
0

and

√

〈ab|M †
0−M0−|ab〉 =

√

1

2

[

1 0 0 1
]

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

1
0
0
1

=
1√
2

[

1 0 0 1
]

1
0
0
0

=
1√
2

(1.36)

Observe that because the measurement operators are positive-definite the
productM †

0−M0− = M0−. Note that we naturally extended the single qubit measure-
ment operators from eq. 1.28 to multi qubit measurement such as M00 or M01. This
is formally possible despite the fact that as a result of the contemporary measure-
ment technology, only single qubit measurements are allowed and to detect multiple
qubit states, synchronous single-qubit measurements must be executed [LBA+08].

Similarly, the probability of measuring output on the qubit-a in state |0〉 is:

p(0) =
[

1√
2

0 0 1√
2

]

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

+

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

1√
2

0
0
1√
2

=
[

1√
2

0 0 1√
2

]

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

1√
2

0
0
1√
2

=
1

2

(1.37)

1.5. FROM QUANTUM MECHANICS TO QUANTUM LOGIC 21

If one would look to the output of the measurement on the second qubit (qubit-
b), the probability for obtaining |0〉 or |1〉 is in this case the following:

p(0) =
[

1√
2

0 0 1√
2

]

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

+

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

1√
2

0
0
1√
2

=
[

1√
2

0 0 1√
2

]

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

1√
2

0
0
1√
2

= p(1) =
1

2

(1.38)

Thus the expectation values for measuring both values 0 or 1 on each qubit
independently are 1

2
.

If however one looks on the second and non-measured qubit (if the qubit-a
is measured, it is the qubit-b, and vice versa) and calculates the output probabili-
ties, the output is contradictory to the expectations given by standard probabilistic
distribution such as a coin toss q = 1− p. To see this let’s start in the state

(1.39)

1√
2

0
0
1√
2

and measure the qubit-a and obtain a result. In this case assume the result of
the measurement is given by:

(1.40) |Ψ〉 → M0|Ψ〉
√

〈Ψ|M †
0M0|Ψ〉

=

1
0
0
0

Then measuring the second qubit (qubit-b) will not affect the system because the
measurement of the qubit-a has collapsed the whole system into a single basis state:

(1.41) |Ψ〉 M−→ |00〉

22 CHAPTER 1. QUANTUM COMPUTING BASICS AND CONCEPTS

The probability for obtaining a |1〉 on the qubit-b is thus 0 and the measurement
on qubit-b (after having measured qubit-a) has no effect on the system at all. This
non-locality paradox was first described by Einstein-Podolsky-Rosen work [EPR35]
and is known as the EPR paradox.

(1.42)

|↑↑〉 =
|00〉+ |11〉√

2
, |↑↓〉 =

|00〉 − |11〉√
2

, |↓↑〉 =
|01〉+ |10〉√

2
, |↓↓〉 =

|01〉 − |10〉√
2

Equation 1.42 shows the so-called Bell states. These states are the example
of entangled basis states that can be used for quantum computation. Observe,
that mathematically, the entangled states are such that they cannot be factorized
in simpler terms. For example, the state (|00〉+|01〉)√

2
→ 1√

2
(|0〉 + |1〉)|0〉 and thus is

factorizable. However, the states as those introduced in eq. 1.33 cannot be factorized
in such a manner and are thus entangled; physically implying that they are related
through measurement or observation. This particular phenomenon is one of the
most powerful in quantum mechanics and quantum computing, as it allows together
with superposition the speedup of solutions to certain types of problems.

1.5.3 Density Matrix and POVM

When dealing with measurement and representation of systems that are not com-
pletely known it is useful to represent the system using the Density Matrix repre-
sentation [NC00]. A quantum system |ψ〉 spanning a Hilbert space on basis states
|0〉 and |1〉, with pi the probability of observing value i can be represented as:

(1.43) ρ =
∑

i

pi|ψi〉〈ψi|

With |ψi〉〈ψi| being the outer-product, ρ is the density matrix and pi is the prob-
ability of observing the given collapsed state |ψi〉〈ψi|. For example, for a system

1.5. FROM QUANTUM MECHANICS TO QUANTUM LOGIC 23

described by |φ〉 = 1√
2
|00〉+ 1√

2
|01〉 we have:

|00〉〈00|
2

+
|01〉〈01|

2
=

1√
2

0
0
0

⊗
[

1√
2

0 0 0
]

+

0
1√
2

0
0

⊗
[

0 1√
2

0 0
]

=

1
2

0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

+

0 0 0 0
0 1

2
0 0

0 0 0 0
0 0 0 0

=

1
2

0 0 0
0 1

2
0 0

0 0 0 0
0 0 0 0

(1.44)

To make a complete description one needs to determine precisely the probability of
observation of the states |00〉〈00| and |01〉〈01|. Thus density matrix corresponding
to the system from eq. 1.44, is shown in eq. 1.45.

(1.45) ρ =

1
2

0 0 0
0 1

2
0 0

0 0 0 0
0 0 0 0

Let Mk be a measurement operator for the quantum state |k〉 such as M00 =
|00〉〈00|, the density matrix is calculated using the trace:

∑

i

pi〈ψi|M †
kMk|ψi〉

=
∑

i

pitra(M
†
kMK |ψi〉〈ψi|)

= tra(M †
KMKρ)

(1.46)

The final state of the system in the post-measurement state |ψk〉 is described by
applying the given operator to the quantum state. Thus one of the measurement
operators from M =

∑

kMk is used and the final state is represented as:

(1.47) |ψk〉 =
Mk|ψ〉

√

〈ψ|M †
kMk|ψ〉

24 CHAPTER 1. QUANTUM COMPUTING BASICS AND CONCEPTS

In density matrix notation this can be expanded to:

(1.48) ρk =
∑

i

pi
Mk|ψi〉〈ψi|M †

k
√

〈ψi|M †
kMk|ψi〉

=
MkρM

†
k

tra(M †
KMKρ)

The density matrix is also useful to describe quantum ensemble systems (quantum
system constructed from multiple independent subsystems). Such system represents
a set of prepared states. For instance, a set of prepared states such that 50% of them
is in |0〉〈0| and 50% in |1〉〈1| is said to be in a mixed state (a statistical average).
The density matrix of such state is given in eq. 1.49.

(1.49) ρR =
1

2
|0〉〈0|+ 1

2
|1〉〈1|

[

1
2

0
0 1

2

]

In contrast, a system in a state |φ〉 = 1
2
(|0〉+ |1〉)⊗ (|0〉+ |1〉) is said to be in a pure

state (eq. 1.50).

ρQ = |φ〉〈φ| =1

4
[|00〉 〈00|+ |00〉 〈01|+ |00〉 〈10|+ |00〉 〈11|]

+
1

4
[|01〉 〈00|+ |01〉 〈01|+ |01〉 〈10|+ |01〉 〈11|]

+
1

4
[|10〉 〈00|+ |10〉 〈01|+ |10〉 〈10|+ |10〉 〈11|]

+
1

4
[|11〉 〈00|+ |11〉 〈01|+ |11〉 〈10|+ |11〉 〈11|]

(1.50)

The trace tra(ρ2) is also a measure for whether the system is in pure state or in a
mixed quantum state. It can be seen, that given ρR, the trace tra(ρ2

R) < 1 (the sys-
tem is in mixed state) while tra(ρ2

Q) = 1 because it is a pure quantum state [NC00].
In other words, a pure state is a quantum state that can be represented by a single
ket vector (a probability of 1) while a mixed state is a statistical distribution of
states. Thus a pure state has a density matrix with a single probability p = 1.

This distinction can be observed from the logic point of view; quantum operators
corresponding to boolean reversible functions will be represented as permutation
matrices while quantum operators with probabilistic outcomes will be represented
by unitary operators having coefficients (possibly complex) (

√

|α|2 = 0) < |α| <
(
√

|α|2 = 1). A similar observation can be made for a density matrix; a density
matrix such that tra(ρ2) = 1 will represent a permutative reversible logic function.

Example 1.5.3.1

Permutative and non-Permutative matrices Let f(a, b, c) be a reversible logic func-
tion defined by a f = a ⊕ b ⊕ c with logic table shown in Table 1.1. Observe that

1.5. FROM QUANTUM MECHANICS TO QUANTUM LOGIC 25

Table 1.1: Logic function f(a, b, c) = a⊕ b⊕ c
abc a’b’c’
000 000
001 001
010 011
011 010
100 101
101 100
110 110
111 111

this reversible function can be written as a matrix and the input-output pair as a
vector. For three variable fucntion an input vector will have 23 coefficients, each
representing the presence or the absence of the minterm in the input state. For is-
ntance the input logic state 011 = [00010000] and the logic state 010 = [00100000].
The permutative matrix representing the function f(a, b, c) is

(1.51) f(a, b, c) =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

Such matrix is called permutative matrix because the operation it performs is a
permutation of the inputs.

So far in this chapter we have been using the Projective Measurement (illustrated
in examples above), however other types of measurement are also possible. Another
type of measurement (much more realistic) is the Positive valued-operator measure-
ment (POVM). The importance of POVM is due to the fact that the projective
measurement is not well suited to measure for states in non orthonormal bases.
Moreover POVM, unlike the projective measurement case, does not always allow to
determine the complete state of the system after a measurement (contrary to the
case of projective measurement operator M =

∑

k pkMk) but rather allows to make
prediction about the probabilities of the different possible measurement outcomes
represented by the density matrix. This is because if one desires to measure two non
orthonormal states and with the condition that every quantum system is completely
described by M =

∑

k pkMk, then because the two desired states do not span the

26 CHAPTER 1. QUANTUM COMPUTING BASICS AND CONCEPTS

complete underlying Hilbert space, there is a state that when measured nothing can
be said about the observed result. This measurement is much more realistic.

Example 1.5.3.2 Projective Measurement of non-orthonormal states

For example assume we have a quantum system |Φ〉 in a Hilbert space spanned
by 2 orthonormal basis states |0〉 and |1〉. In this setting the projective measure-
ment allows to determine completely the state of the system. Now assume that our
basis states are not orthonormal, and we use for measurement the states |0〉 and
(|0〉+|1〉)√

2
[NC00]. The projective measurement operators for these states are shown

in equation 1.52.

(1.52) ρ0 = |0〉〈0| =
(

10
00

)

and ρa =
1

2
(|0〉+ |1〉)(〈0|+ 〈1|) =

1

2

(

11
11

)

Looking now to the outcome of the possible measurements by using |ψ〉 = M |ψ〉
〈ψ|M†M |ψ〉 ,

for a initial state |0〉 we obtain:

(1.53)
ρ0|0〉

√

〈0|ρ†0ρ0|0〉
= 1 and

ρ1|0〉
√

〈0|ρ†1ρ1|0〉
=

1

2

The obtained measurement results in value 1 when measuring using the right mea-
surement basis. However, in the case when the result of measurement is proba-
bilistic (observing state |0〉 and state |1〉 with equal probability), the state prior to
the measurement cannot be determined with certainty as it could be either state of
them.

As can be seen in the above example, the projective measurement defined is under-
dimensioned to capture all the features of this system. One solution to this problem
is to create projective measurement in a higher dimensional space. The other so-
lution is to use the POVM measurement. That means, that for a quantum system
that does not have orthonormal bases, to predict the outcome of the measurement
is still possible .

Definition 1.5.2 (POVM). A POVM is a set of Hermitian positive operators such
that

∑

i |ui〉〈ui| = I as only requirement.

Example 1.5.3.3 Constructing a POVM

Let |ui〉 be a set of non-normalized quantum states such that:

|u0〉 =

√
2√
3
|1〉

|u1〉 =
1√
2
|0〉 − 1√

6
|1〉

(1.54)

1.5. FROM QUANTUM MECHANICS TO QUANTUM LOGIC 27

The non-normalized quantum states (eq 1.54) and similarly to eq. 1.53 the proba-
bilities of outcomes for these states are given by |〈ui|Φ〉|2. This means that when the
outcome of our measurement generates an eigenvalue of 1, the state of the system
is well detected. When the output is probabilistic (after measurement) the initial
state of the system cannot be determined with certainty. With such initializations of
states |ui〉, it is possible to measure for more states that is possible in the orthonor-
mal basis set. Thus let represent the states |ui〉 as corresponding density matrices
Di of the observable:

D0 = |u0〉 〈u0| =
2

3
|1〉〈1| = 2

3

(

0 0
0 1

)

D1 = |u1〉 〈u1| = (
1√
2
|0〉 − 1√

6
|1〉)(1√

2
〈0| − 1√

6
〈1|) =

(

1
2

− 1
2
√

3

− 1
2
√

3
1
6

)

D2 = I −D0 −D1

(1.55)

If the POVM operators from eq. 1.55 are used to detect the desired states from eq.
1.54, it is easy to see that both states |u0〉 and |u1〉 results in observing the state
being detected by D0 and D1 with equal probability independently from the initial
state (similarly to example 1.5.3.2).

To solve this, one can construct such POVM operators that each observable D is
orthogonal to u:

D0+ =
2

3
|0〉〈0| = 2

3

(

1 0
0 0

)

D1+ = (
1√
2
|0〉+ 1√

6
|1〉)(1√

2
〈0|+ 1√

6
〈1|) =

(

1
2

1
2
√

3
1

2
√

3
1
6

)

D2 = I −D0 −D1

(1.56)

The observables D0+ and D1+ now allow to distinguish between states u0 and u1.
For instance, when D0+ is observed the initial state must have been u1 (D0+ |u0〉 =
{}) and when the observable D1+ was observed the prior state must have been
u0 (D1+ |u1〉 = {}). This fact is summarized and verified by simple mathematical
operations as shown in eq. 1.57

28 CHAPTER 1. QUANTUM COMPUTING BASICS AND CONCEPTS

〈u0|D†
0+D0+ |u0〉 = 0

〈u1|D†
1+D1+ |u1〉 = 0

and

〈u0|D†
1+D1+ |u0〉 = 1

〈u1|D†
0+D0+ |u1〉 = 1

(1.57)

The D2 represents the uncertainty of the missed measurement and thus each
time the D2 is observed, nothing cannot be said about the system. In other words,
for two given non orthonormal states, one can construct a POVM operators such
that for each desired state expressed by Dn p(Dn) = 1, p(Dm) = 0, ∀m 6= n.

Thus, well designed POVM operators allows to distinguish between non-orthonormal
states for the price of obtaining no information at all about the system in some cases.
It can be noticed that using the POVM operators one will not obtain any information
about the state of the system before the measurement. However, POVM operators
allow to determine the probabilities of outcome (quantum state) with certainty.

Chapter 2

Quantum Logic Synthesis and

Principles of Quantum Circuits

Design

2.1 Introduction

Logic minimization is a well known area of computer engineering and in this book
various new research aspects related to search, automated synthesis and minimiza-
tion of quantum circuits are discussed. In Quantum Logic Synthesis, the meth-
ods used are directly related to the representations that are being applied. For
these representations different approaches are used while synthesizing FSM’s, Logic
Circuits, Behaviors or Quantum Cellular Automata. For instance within evolu-
tionary approaches, to synthesize a FSM using evolutionary approach, the most
prominent method includes the Genetic Programming [Koz92, Koz94] while the
synthesis of boolean logic functions or circuits has mainly been done using the
Genetic Algorithm. Algorithmic methods such as composition or spectral synthe-
sis [SBM05a,SBM05b,Mil02,MMD06,PARK+01,KPK02,GAJ06,FTR07,WGMD09,
SZSS10,PLKK10] have been used as well.

In this chapter introduced are concepts of quantum logic synthesis with respect
to quantum primitives and their costs. We describe a general methodology for
the synthesis of quantum circuits. Various heuristics are studied on the functional
level in order to demonstrate logic synthesis methods used for Machine Learning
(Chapter ??). The described concepts introduce the cost of quantum gates used in
our synthesis methods and in particular we analyze the quantum inductive bias on
the logic synthesis of circuits that can be used in the control of behavioral robots
using inductive machine learning.

29

30 CHAPTER 2. QLS AND SEARCH

2.2 Previous research on automated synthesis of

quantum circuits

The search for smaller, cheaper and ideally optimum circuits in quantum and re-
versible logic led to a set of gates and circuits commonly used as universal minimal
primitives for logic synthesis [BBC+95, Per00, SD96, HSY+04]. There are several
properties that are being searched for and some of them are: universality, low re-
alization cost, technology specificity and good synthesis properties. In general, the
goal is a sum of the mentioned sub-goals with a various degree of importance for
every single one of these goals. However, depending on the complexity of the defined
problem, it is also required to precisely specify the partial goals and explore them
individually.

It was shown by [DiV95, DiV95, SD96, MML+98, Per00] that all gates (quantum
circuits) with more than 1 qubit could be build using only one-qubit and selected
two-qubit primitives. A big challenge is to build the basic possible gates such as
Fredkin [SD96,LPG+04] or Toffoli having the smallest cost for a given technology.
According to the description of quantum logic in Chapter 1, it is clear that logic
synthesis of quantum circuits consists in finding compositions of primitive gates
such that their resultant matrix is equal to the specification unitary matrix. This
problem can be seen in an analogy to designing classical logic circuits from basic
logic gates using a specification in form of a Karnaugh Map (KMap) [DM94]. As
was shown in [LPG+04] the synthesis of quantum circuits is a non-monotonic pro-
cess and consequently it is hard to use automated techniques to quantum circuit
synthesis without relying on some heuristics. Also as can be implied from matri-
ces representing gates or circuits, their dimensionality grows exponentially with the
number of qubits. For example a circuit with 3 qubits will be represented by a
matrix of 23 by 23 (64 elements) while a circuit with 5 qubits will have a matrix of
size 25 by 25 (1024 elements). Each element of such a matrix is in general a com-
plex number and consequently the calculation of the matrix may in the worst case
demand also an exponential time. Moreover, in quantum logic synthesis all circuits
can be composed in infinitely many ways using quantum gates and without adding
more qubits. In other words, a circuit given by a Unitary transformation U, can
be realized either from a minimum number of gates or can be realized in infinitely
many circuits of various costs; the more component gates available as the input set,
the more solutions to the synthesis are possible. Thus the problem of minimization
in Quantum Logic Synthesis is not only a problem of exponentially expanding the
solution space with the size of the circuit but also that of finding the minimal set of
gates that would allow a potentially minimal solution.

Without any constraints, the synthesis problem described in the previous para-

2.2. PREVIOUS RESEARCH 31

graph, is NP; the process of synthesizing a circuit with k-quantum gates can be seen
as the problem of subset-sum (knapsack) [GJ79,CLRS01] problem. To see this, it
is enough to consider an initial finite-size set of quantum gates and the problem is
to ask whether yes or not there is a circuit with k-gates implementing function f?
This description is analogous to the Knapsack problem. In particular depending on
technology, the challenge is to build any universal gate using only one-qubit and
two-qubit primitives.

Most of known quantum circuits synthesis techniques are either for a small number
of qubits only, for a small number of gates or for certain specific constrained logic
families of functions (such as reversible or linear functions). The most common
Quantum Logic Synthesis (QLS) approaches are used for the design of purely quan-
tum permutative (reversible) logic circuits [MD03,LPG+04,LP02,YHSP05,YSPH05,
MDM05,SBM05a,SBM05b,MDM07,HSY+06,WGMD09,PLKK10,?]. The synthe-
sis of the reversible circuits can be further split into two main subcategories; one
approach to the reversible logic design relies heavily on the usage of the ancilla
bits [MD03,MDM05,WGMD09], the second approach designs reversible logic circuits
only on the minimal number of qubits [MP02,LPG+04,YHSP05,FTR07,?,LSKed].
The general strategy separating these two mainstreams of reversible logic synthesis
is that a large number of ancilla qubits can potentially reduce the number of the
required gates to synthesise a circuit at a price of the ancilla bits [MWD10].

A more general QLS for arbitrary quantum circuits was performed fro much
smaller number of qubits [Yab00, Rub01, LPG+03, LSKed]. This approach was in
general more experimental up to now due to the fact that there is potentially an
infinite number of quantum gates that can be used for the QLS. In these approaches
a single algorithm - a genetic algorithm - was used to design or optimized a quantum
circuit.

Thus despite some already reported results from the QLS approach there
is no general method to synthesize larger than 2-qubit quantum circuits using
quantum non-permutative primitives. Some of the methods are adapted from Re-
versible logic synthesis and have been used mainly for synthesis using the CNT
set of gates (NOT, Feynman and Toffoli) or similar libraries not allowing to use
the entire power offered by the quantum circuits and quantum logic. There ex-
ists also a small set of various new libraries of gates for quantum logic synthe-
sis [BBC+95, SD96, LP02, YSPH05, LPK10]. Among these approaches also exists
methods using the so-called Multi-Controlled Toffoli (MCT) gates as the unique
synthesis component gate [MMD03, MDM05, MDM07, WGMD09, PLKK10] where
the function designed as a circuit is sollely based from the Toffoli gates. Closer
to the quantum hardware implementation is for instance the approach proposed
in [SBM05a] where the synthesis of the reversible gates is done using the so called-
quantum multi-plexer. However there is no proof that any of them has the minimal

32 CHAPTER 2. QLS AND SEARCH

quantum realization cost with respect to all circuits that can be build for the given
functional specification. Thus it is still an open issue to find out which set of gates
will allow to generate a least costly circuit (in the number of gates and in the number
of ancilla bits) for various technologies.

2.3 Quantum Gates and Quantum Logic Circuits

2.3.1 Single-qubit Quantum Gates

We are now concerned with matrix representation of operators. The first class of
important quantum operators are the one-qubit operators realized in the quantum
circuit as the one-qubit (quantum) gates. Some of their matrix representations can
be seen in equation 2.1.

(2.1)

a) X =

[

0 1
1 0

]

b) Y =

[

0 −i
i 0

]

c) Z =

[

1 0
0 −1

]

d) H = 1√
2

[

1 1
1 −1

]

e) V = (1+i)
2

[

1 −i
−i 1

]

f) Phase =

[

1 0
0 i

]

Each matrix of an Operator has its inputs from the top (from left to right) and the
outputs on the side (from top to bottom). Thus taking a state |ψ〉 = α|0〉 + β|1〉
and an unitary operator H (eq. 2.1d) the result of computation is represented in
equation 2.2.

H|Ψ〉 =
1√
2

[

1 1
1 −1

] [

α
β

]

=

[

α+β√
2

α−β√
2

]

(2.2)

To understand which particular quantum logic operation is executed for each output,
the operation from eq 2.2 is broken down to each of the possible input states in eq.
2.3. The first equation from eq. 2.3 shows that when the input state is |0〉 it is
transformed so that when it is then observed the outcome will be 50% of observing
the state |0〉 and 50% of observing the state |1〉. It is similar for the input state |1〉,
because p(1) = 1

2
(〈0|+ 〈1|)M †

1M1(|0〉+ |1〉) = 1
2
.

2.3. QL, QG AND QLC 33

|0〉; 1√
2

[

1 1
1 −1

] [

1
0

]

→ 1√
2
(|0〉+ |1〉)

and

|1〉; 1√
2

[

1 1
1 −1

] [

0
1

]

→ 1√
2
(|0〉 − |1〉)

(2.3)

Observe that while the NOT gate has a unitary matrix that is a permutation matrix,
some other gates like the Hadamard and the V gate have unitary matrices that are
not permutative matrices. The Hadamard gate is very well known because it is
used to create a superposition of states. An example of creating one qubit in a
superposition is given in equation (2.3) where for each input either state |0〉 or |1〉
the output state |0〉 or |1〉 can be measured with a probability of 1

2
.

Observe that the Square-root-of-Not is a unitary transformation creating a complex
superposed state (eq. 2.4).

√
X = V and

√
X = V †

where V =
1 + i

2

[

1 −i
−i 1

]

V † =
1 + i

2

[

−i 1
1 −i

]

(2.4)

The V gate has two interesting properties V · V = V † · V † = NOT = X and
V † · V = V · V † = I and as is shown later, this gate is used to construct the
well-known cheapest universal quantum gates.

In this book we will be using the single-qubit gates that are commonly used
in papers on quantum synthesis . They are : NOT (Pauli rotation X, denoted also
in literature by σx), Hadamard, π/8, and S (eq. 2.5).

(2.5) S(ψ) =

[

1 0
0 eiψ

]

We will also use Pauli rotations X, Y and Z or arbitrary angle rotations with
respect to axes X, Y and Z of the Bloch sphere (as in Figure 1.6) and some their
special cases for fixed angles which are multiples of 45◦ . We will use also two new
gates; pseudo-Hadamard h and its adjoint pseudo-Hadamard gate h−1 (eq. 2.6),
because they are used to build many quantum gates, both permutative (pseudo-
binary) and general-purpose-quantum gates (called also truly quantum gates) that
are most useful in synthesis [JM98,JHM98].

34 CHAPTER 2. QLS AND SEARCH

h =
1√
2

[

1 −1
1 1

]

h−1 =
1√
2

[

1 1
−1 1

]

(2.6)

Some additional gates are also listed in equation 2.7. In equation 2.7 symbols
X, Y, and Z are the defined earlier Pauli spin matrices and P (ψ), X(ψ), Y (ψ), and
Z(ψ) are the corresponding 2*2 matrices of arbitrary parameterized angle rotations
by angle ψ. The rotations X(ψ), Y (ψ), and Z(ψ) can be explained as rotations with
respect to angles X, Y and Z, respectively, as illustrated on the Bloch sphere [NC00].
P is a phase rotation by ψ/2 [Lom03].

T =

[

1 0

0 e
jπ
4

]

, P (φ) = e
jφ

2 I, X(φ) = cos
φ

2
I − jsinφ

2
X,

X(φ) = cos
φ

2
I − jsinφ

2
Y, Z(φ) = cos

φ

2
I − jsinφ

2
Z

(2.7)

Let us now try to find, by matrix/vector multiplication, all possible states that
can be created by applying all possible serial combinations of gates V and V † to
states |0〉, |1〉, and all states created from these basis states (Figure 2.1). A qubit
|0〉, given to a ”square root of NOT” gate (Figure 2.1a) gives a state denoted by |V0〉.
After measurement this state gives |0〉 and |1〉 with equal probabilities 1

2
. Similarly

all other possible cases are calculated in Figure 2.1b - h. As we see, after obtaining
states |0〉, |1〉, |V0〉 and |V1〉 the system is closed and no more states are generated.
Therefore the subset of (complex, continuous) quantum space of states is restricted
with these gates to a set of states that can be described by a four-valued algebra
with values {|0〉, |1〉, |V0〉, |V1〉}.

2.3.2 Multi-qubit and Controlled Quantum Gates

(2.8) U =

00 01 10 11
↓ ↓ ↓ ↓

00←
01←
10←
11←

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

The second class of quantum gates includes the Controlled-U gates. Schematic
representation of such gates can be seen in Figure 2.2. Gates in Figure 2.2a - Figure

2.3. QL, QG AND QLC 35

V |V0〉(a) ⇔|0〉
1
2

[

1 + j 1− j
1− j 1 + j

]

×
[

1
0

]

= 1
2

[

1 + j
1− j

]

V|V0〉 |1〉(b) ⇔
1
2

[

1 + j 1− j
1− j 1 + j

]

×
[

1 + j
1− j

]

= 1
2

[

(1 + j2) + (1− j2)
(1− j2) + (1− j2)

]

= 1
2

[

2(1 + j2)
2(1− j2)

]

= 1
2

[

(1− 1)
(1 + 1)

]

=

[

0
1

]

(c) |V0〉 V−→ |1〉 (d) |V1〉 V−→ |0〉 (e) |0〉 V †
−→ |V1〉

(f) |V0〉 V †
−→ |0〉 (g) |1〉 V †

−→ |V0〉 (h) |V1〉 V †
−→ |1〉

Figure 2.1: Calculating all possible superposition states that can be obtained from
basis states and using V and V † gates

2.2c represent the general structures for single-qubit-controlled single-qubit, two-
qubit-controlled and single-qubit and two-qubit-controlled and two-qubit quantum
gates respectively. The reason for calling these gates Controlled is the fact that
they are based on two operations: first there is one or more control bits and second
there is a unitary transformation similar to the matrices from equation 2.1 that
is controlled. For instance the Feynman gate is a Controlled NOT gate and has
two input qubits a and b as can be seen in Figure 2.2 and shown with input and
output minterms in 2.8 (minterm being a product term of given values for all input
variables). Thus qubits controlling the gate are called the control qubits and the
qubits on which the unitary transform is applied to are called the target qubits.

a′

b′

c′c

b

a a′

b′

c′

a

b

c

a′

b′

c′c

b

a

U

a′

b′b

a

a′

b′b

a a′

b′

c′c

b

a

U
U

(c)(a)

(d) (f)

(b)

(e)

Figure 2.2: Schematic representation of Controlled-U gates: a) general structure of
single-qubit controlled U gate (control qubit a, target qubit b), b) two-qubit con-
trolled single-qubit operation, c) single-qubit controlled two-qubit target quantum
gate, d) Feynman (CNOT), e) Toffoli (CCNOT), f) Fredkin. a, b, c are input qubits
and a’, b’ and c’ are respective outputs.

36 CHAPTER 2. QLS AND SEARCH

Figures 2.2d - Figure 2.2f represent special cases where the controlled unitary op-
erator is Not, Not and Swap, respectively. The respective unitary matrices are in
equations 2.8, 2.9a and 2.9b.

Equation 2.8 shows that if the input state is for instance |00〉 (from the top)
the output is given by U |00〉 = p00|00〉 = 1 ∗ |00〉. Similarly for all other possible
input /output combinations.

(2.9) (a)

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

(b)

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

The Controlled-U gate means that while the controlled qubit a is equal to 0 the
qubits on output of both wires are the same as they were before entering the gate
(a’ = a, b’ = b). Now if qubit a equals to 1, the result is a’ = a and b’ = ¬b according
to the matrix in equation (2.1.a). It can be easily verified that the CCNOT (Toffoli)
gate is just a Feynman gate with one more control qubit and the Fredkin gate is a
controlled swap as shown in Figure 2.2.

A closer look at equations (2.8 and 2.9) gives more explanation about what is de-
scribed in eq. 2.8: CNOT, eq. 2.9a : Toffoli and eq. 2.9b : Fredkin gates. For
instance, equation 2.8 shows that while the system is in states |00〉 and |01〉 the
output of the circuit is a copy of the input. For the inputs |10〉 and |11〉 the second
output is inverted and it can be seen that the right-lower corner of the matrix (in
bold fonts) is the NOT gate.

The second type of multi-qubit gates are such gates that are not controlled-U
gates. There is essentially only one type of such gates. This important gate is the
SWAP gate and its derivatives. The SWAP gate, as its name indicates swaps two
neighboring qubits. Matrix of a SWAP gate is shown in eq. 2.10

(2.10) SWAP =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

To summarize, quantum gates can be divided into two major groups: one-qubit gates
and controlled-U gates. Most of gates are represented by permutation matrices and

2.3. QL, QG AND QLC 37

a)
Z hφ

⇔

h−1

b)h× Φ× h−1 =

[

1 1
−1 1

]

×
[

1 0
0 eiφ

]

×
[

1 −1
1 1

]

c)

φ = 0 I
φ = 90◦ V
φ = −90 V †

φ = 180 X

d)

φ = 0 I

φ = 90◦ 1√
2

[

1 −1
1 1

]

= h

φ = −90 1√
2

[

1 1
−1 1

]

= h−1

φ = 180

[

0 −1
1 0

]

Figure 2.3: (a) Controlled-Z gate realized with controlled-phi gate surrounded
by pseudo-hadamard gates, (b) Calculation of unitary matrix for lower qubit of
this gate, (c) Various gates realized by φ for angles 0◦, 90◦, −90◦ and 180◦ in X
rotations.The φ gate realizes identity, Square-root-of-NOT, its adjoint and Inverter,
(d) some gates realized by Y rotations.

the gates that cannot be represented by permutation matrices create a superposition
of states. Unitary matrices are linear operators modifying complex amplitudes of
the input state and thus they affect the probability of measurement of each basis
state.

2.3.3 Constructing Quantum Circuits

A quantum gate operating in parallel with another quantum gate will increase the
dimensions of the quantum logic system represented in matrix form. This is due to
application of the Kronecker (tensor) product of matrices to the system. Kronecker
Matrix Multiplication is responsible for the growth of qubit states such that N bits
correspond to a superposition of rN states, whereas in other digital systems, N bits
correspond to a single state at a time. The number r denotes the base (radix) of
logic, being 2 for the binary logic and 3 for the ternary logic. The Kronecker Product
of two one-qubit gates is illustrated below:

A quantum gate in series with another quantum gate will retain the dimensions of
the quantum logic system. The resultant matrix is calculated by multiplying the
operator matrices in a reverse order. This is a standard multiplication operation on
matrices.

38 CHAPTER 2. QLS AND SEARCH

h

⇔

⇔

h

⇔

⇔

Z

V

V †

sH H

H H

V † h−1 s−1

s−1

h−1

(d)

(c)

(b)

(a)

Figure 2.4: (a) CNOT realized with controlled-Z and pseudo-hadamard gates. Sym-
bol h stands for pseudo-hadamard gate and symbol h-1 for inverse pseudo-hadamard
gate. (b) CV realized with Controlled-S and Hadamard gates, (c) CV † realized with
controlled-S-1 and Hadamards, (d) CV † realized with controlled-S-1 and pseudo-
hadamards. Observe that this realization requires less pulses than its equivalent
from Figure 2.6c

A quantum circuit can be easily analyzed. A parallel connection of gates corresponds
to the Kronecker Product (the Tensor Product) of unitary matrices of respective
gates. The serial connection of gates corresponds to the matrix multiplication (in
reverse order) of the matrices of these gates. One can thus easily check that the
equivalence transformations from Figure 2.4, 2.5a and 2.6b are correct. All veri-
fications of quantum equivalence transformations can be done by multiplying and
comparing respective unitary matrices.

Figure 2.3a presents the controlled general phase gate used together with a pseudo-
Hadamard and its inverse gate. Figure 2.3b has the symbolic unitary matrix when
the control signal is |1〉. By substituting various values of angles, 0◦, 90◦ , −90◦

, 180◦ the unitary matrices are created which are next combined with the pseudo-
Hadamard matrices, as in Figure 2.3a. This leads to the table from Figure 2.3c that
demonstrates that by changing the angle the gate from Figure 2.3a can work as a
2-qubit identity, controlled-V, controlled-V† and CNOT. Actually this gate can be
used as a controlled root of various degrees. Figure 2.3d illustrates unitary matrices
for various angles of Y. This figure demonstrates therefore the usefulness of Y and
Z rotations to create gates. Unitary matrices for some useful 2-qubit gates are
presented in Figure 2.7.

There are two methods of designing and drawing quantum/reversible permu-
tative circuits.

2.3. QL, QG AND QLC 39

(a)

Y (φ) = cos
φ

2
− isinφ

2
= cos

φ

2

[

1 0
0 1

]

− isinφ
2

[

0 −i
i 0

]

=

[

cosφ
2

0

0 cosφ
2

]

−
[

0 −i2sinφ
2

i2sinφ
2

0

]

=

[

cosφ
2
−sinφ

2

sinφ
2

cosφ
2

]

Figure 2.5: Example how to calculate unitary matrices of generalized rotations from
general matrix formulas

⇒

Z

Z

⇔

Y Y

⇒

⇒

HH

H H

(e)

(b)

(c)

(d)

Figure 2.6: (b) Equivalent transformation of Z gate, (c) equivalent transformation
of CNOT and Hadamard gates, (d) CNOT and NOT transformation, (e) CNOTs
and Pauli Y transformation.

In the first method one draws a circuit from gates and connects these gates by stan-
dard wires. This method is similar to classical circuit design, but the used gates are
reversible or quantum. The rules to design a reversible circuit using this approach
are the following: (1) no loops allowed in the circuit and no loops internal to gates,
(2) fan-out of every gate is one. These rules preserve the reversible characteristic
of gates thus the resulting circuit is also completely reversible. When circuits are
drawn, the gates are placed on a 2-dimensional space and the connections between
them are routed. Every crossing of two wires in the schematics is replaced with
the quantum Swap gate making the schematics planar, which means, no more two
wires intersect in it. Also, it is in most cases needed to add ancilla bits initialized to
constants. This method is not practical with respect to the required small width of
quantum registers in modern quantum technologies. The schematics is thus rewrit-

40 CHAPTER 2. QLS AND SEARCH

(c)

H

(a) (b)

σiR(θ)

(d)

e−iϕ
φ =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e−iφ

(e)

Z

φ = π

CZ =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

S

(f)

φ = π
2

CS =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 i

Figure 2.7: Controlled gates. (a) Controlled Hadamard gate, (b) Controlled Rota-
tion with respect to angle θ. This symbol applies to any angle type, particularly X,
Y and Z. Additional symbol is used to denote the angle type, (c) symbol of Pauli
rotation where subscript i = X, Y, Z, (d) controlled phase and its unitary matrix,
(e) Controlled Z and its unitary matrix, (f) controlled phase gate and its unitary
matrix.

ten to a quantum array notation used in this book. It is relatively easy to transform
a quantum array to its corresponding unitary matrix, as will be illustrated in the
sequel. The approaches that use this first design method of reversible circuits are
closer to those of the classical digital CAD where the design stages of logic synthe-
sis and physical (geometrical) design are separated. They are intuitive and allow to
create large quantum networks without resorting to their unitary matrices. Unfortu-
nately they are not formal and thus not much is published on these design methods.
Using this methodology can lead to circuit with very wide quantum registers.

The second design method for quantum circuits is to synthesize directly the quantum
array of a circuit that was initially specified by a unitary matrix (or a set of functions
for desired outputs). This method is executed without involving additional graph-
based or equation-based representations. The synthesis can be conducted by one of
two approaches:

• composing matrices of elementary gates in series or in parallel until the matrix
of the entire circuit becomes the same as the specification matrix [LPG+03,
LPMP02,MMD03,MDM05,Rub01,WGMD09,PLKK10],

2.4. FUNCTION CLASSIFICATION 41

• decomposing the specification matrix of the entire circuit to parallel and se-
rial connections of unitary matrices until all matrices correspond to matrices
of elementary gates directly realizable in a given technology [SBM05a,KP06,
HSY+04,HSY+06,PLSK11]. A more mathematical method was used by Yang
et al. [YHSP05,YSPW05] to analyze group theoretical properties of quantum
unitary operators and deduce the set of universal quantum gates. In a sim-
ilar matehmatical manner, Hung et al. [HSY+06] used the reconstructibility
analysis to desing quantum circuits.

The above methods were all exact in the sense that the circuit realizes the intended
quantum operator in an exact way (no error). In another synthesis variant, called
the approximate synthesis, it is not required that the circuit specification matrix
and the matrix of composed gates are exactly the same. They can differ by small
allowed values or/and differ in some matrix coordinates only [SBM05a,Luk09].

In Quantum Logic Synthesis some of the difficulties are the lack of general model for
synthesis, heuristics are not well known and until recently there were no counterparts
in quantum logic of such familiar notions of classical logic CAD as KMaps 1, prime
implicants or reductions to covering/coloring combinatorial approaches. Therefore
to explore Quantum Gates and QLS most authors turned to evolutionary algorithms
as the fast prototyping methods for quantum arrays [WG98,Rub00,LP02,LPG+03].
These approaches seem to be good for introductory investigations of the solution
space and its properties, with the hope that by analyzing solutions the researchers
will learn more about the search space and ultimately create more efficient algo-
rithms based on the acquired knowledge.

2.4 Function Classification for Logic Synthesis

Before discussing various techniques in QLS, let us characterize the problem space
that we are studying (Figure 2.8). On the top are the reversible/quantum synthe-
sizable logic functions. It is assumed that these functions are either reversible by
default or are made reversible (by adding ancilla bits). The completely specified
logic functions represent a class of synthesis problems that is well known in elec-
tronics industry and various approaches have already been applied and explored in
CAD tools. In this book the focus is mainly on the incompletely specified functions,
as defined by Definition 2.4.3. The interest in these functions is mainly based on the
facts that a) - incomplete specifications allow to search for novel circuit realizations
of functions or automata, b) they can be synthesized for various learning biases
(Chapter ??) and c) they are used in inductive machine learning (Chapter ??).

1KMaps were first used in quantum circuit synthesis in [LP07]

42 CHAPTER 2. QLS AND SEARCH

Incompletely SpecifiedCompletely Specified

Reversible/Quantum

Logic Functions Logic Functions

Logic Functions

Machine Learning Exact Synthesis

Some inputs-outputs unmatched, All inputs-outputs matched,

Figure 2.8: Schema representing the tree of relations between synthesis approaches
for completely specified and incompletely specified quantum/reversible functions as
used in this book.

b

a

a
b 0

0

1

1

11

00 01

10

Figure 2.9: a) Complete Karnaugh map of the CNOT Gate from 2.9b

2.4.1 Quantum Karnaugh Maps and Function Definitions

As we know, every circuit can be realized using CV , CV † and CNOT gates plus one-
qubit gates such as V or Hadamard. When analyzing such circuits it is important
to use the familiar Karnaugh maps (KMaps) in a new way. The user has to learn
how to overlap groups in the map - this way new circuits and even new types of
circuits have been invented in our PSU group [LPG+03,LP05a,LP07]. These maps
allow to find patterns in Boolean, multiple-valued, multiple-valued-input-binary-
output fuzzy and quantum functions. All synthesis methods in classical logic are
based on patterns: the special classes of functions (such as the symmetrical or unate
functions) have their specific patterns in KMaps. Therefore, being able to find new
types of patterns and use these patterns in synthesis is very important when one
wants to create new logic synthesis methods for new types of logic.

The Karnaugh map is derived from the truth table in a relatively simple pro-
cess. The Karnaugh map of the CNOT gate is illustrated in Figure 2.9.

The arrangement of bits on the K-Map’s rows and columns are in a sequence
known as Gray code, where each value is only one bit change away from the preceding
value. In this case, the order is 0,1. The sequence is 00,01,11,10, as it is for all two-
bit Karnaugh maps (an example is in Figure 2.10), and so on. In a Karnaugh map,
each possible bit combination of a and b is listed, with cells representing every single

2.4. FUNCTION CLASSIFICATION 43

00

01

11

10

00 01 11 10
cd

ab

Figure 2.10: Skeleton of the 4 bit Karnaugh maps

0

0

1

1

1

b
a

0

10

Figure 2.11: Groups in partial Karnaugh map of CNOT. Overlap of the groups
represents 0 (A⊕A = 0). Thus function is āb⊕ ab̄ = a⊕ b.

possible input/output combination. Use the truth table to put the correct output
in each cell. We will notice that the Karnaugh map for 2 inputs registers x and y
as the outputs (Figure 2.9a). Now we make it y Karnaugh map (Figure 2.11) and
synthesize from it (other output is trivial).

The representation used to specify quantum functions from the physical point of
view is not the most appropriate when designing quantum circuits. In standard
approach to Logic Design the function f(a, b, c) is specified as a KMap or a LUT
(Look-Up-Table or Truth Table) (Table. 2.1).

Observe that for the single output function in Table 2.1, the output is balanced;
exactly half of the output values are 0 and half of them are 1.

Definition 2.4.1 (Reversible Functions). Let f(.) be a completely defined function
on {0, 1}⊗n

such that for every input vector ij ⊂ I (I being the set of all possible

Table 2.1: a). - K-map , b) - LUT

a).

c
0 1

ab
00 0 1
01 1 0
11 1 0
01 0 1

b).

abc f
000 0
001 1
010 1
011 0
100 0
101 1
110 1
111 0

44 CHAPTER 2. QLS AND SEARCH

input vectors defined over the binary vector of width n) it holds that

(2.11) f(ij) = oj such that ∀ij , ik ⊂ I; oj 6= ok

Eq. 2.11 represents a one-to-one mapping between input and output vectors defining
a reversible function. The importance of reversible functions in quantum computa-
tion comes from the fact that every quantum function is reversible up to the measure-
ment. The most obvious example of this phenomenon is the entanglement, where
the unitary matrix representing the transformation U is a one-to-one mapping, but
once measured this property is lost (Example 1.5.2.1).

Example 2.4.1.1 Reversible Function

The circuit in Figure 2.12a represents the function shown in a K-map Figure 2.12b).

11

00

10

ab
c 0 1

|010〉

|000〉

01

|011〉

|001〉

a

b

c

a’

b’

c’

X

(a)

|110〉|111〉

|101〉 |100〉

(b)

Figure 2.12: Example of representation of a quantum circuit using a quantum K-
map. X is the Pauli X rotation or an Inverter.

The Table in Figure 2.12b is read as follows: for each logic input combination to
the circuit represented as a minterm, the input state is transformed into another
quantum state. For instance the quantum state |100〉 is transformed to state |000〉
which is denoted as |100〉 → |000〉.

The representation from the above example is however not appropriate for quantum
circuits, as Quantum Unitary operations can yield either deterministic, probabilistic
or entangled states. In particular it is important to notice that the entangled states
are different from the simple probabilistic states, and thus they require also a special
notation.

Definition 2.4.2 (Quantum-Reversible Function). Let U be a Unitary transforma-
tion in a Complex Hilbert space Hd, such that for every input state ψj ⊂ I (I being
the set of all possible binary input vectors width n of the quantum register) it holds
that

(2.12) U |ψj〉 = |ψm〉, such that ∀|ψj〉, |ψk〉 ⊂ I; |ψm〉〈ψn| = 0

2.4. FUNCTION CLASSIFICATION 45

To be more precise, the K-map can be written for output states before the measure-
ment. In such case, the complex coefficients can be written along the output states
(Figure 2.13b).

11

00

10

ab
c 0 1

|010〉

|000〉

01

|011〉

|001〉

a

b

c

a’

b’

c’

X

(a)

(b)

|10〉|G0〉 |10〉|G1〉

|11〉|G1〉|11〉|G0〉V

Figure 2.13: Example of a quantum circuit (a) having a non-permutative unitary

matrix (using a quantum K-map (b)). The V is the
√
X gate. Symbols |G0〉 and

|G1〉 are explained in text.

In this case all the quantum complex coefficients are visible. The G0 and G1 are
two quantum states given by

(2.13) |G0〉 =
(0.5 + 0.5i)|0〉+ (0.5− 0.5i)|1〉

2

and

(2.14) |G1〉 =
(0.5− 0.5i)|0〉+ (0.5 + 0.5i)|1〉

2

respectively. These quantum states are collapsed to observable binary states once
measured. It is also possible to set up POV measurement allowing to introduce new
output values, otherwise not available in classical computing.

Beside KMaps and LUT’s a common representation in classical logic is the BDD
(Binary Decision Diagram). A BDD is a canonical representation of a given function
that is obtained after the minimization of a Decision Tree allowing for more compact
representation of data and functions. In quantum logic synthesis, there are already
known decision diagram representations. The most common is Quantum Multi-
valued Decision Diagram (QMDD) [MM06], however, because QMDD is optimized
for structured quantum logic circuits we do not use them because in general our
algorithm searches the space of all quantum circuits.

Classical, Reversible and Quantum functions can also be specified only for a subset
of input values. In that case they are called Incompletely specified functions. Such
specifications of functions are very useful in machine learning, where only a subset
of input-output pairs of values is known. This is due to the fact that learning tasks

46 CHAPTER 2. QLS AND SEARCH

in Machine Learning are dealing with real-world problems that are in general not
completely known or understood.

Definition 2.4.3 (Incompletely Specified Function). An incompletely specified func-
tion is a set K of input-output pairs (|ψj〉, |ψl〉) such that |K| < 2|N | for any boolean
function. For instance, a 3×1 incompletely specified function is shown in Table 2.2.

Table 2.2: K-map of an incompletely specified 3 × 1 reversible quantum function
before measurement

c 0 1
ab
00 |0〉 |1〉
01 − |1〉
11 − |1〉
01 |0〉 −

Definition 2.4.4. Cares and Don’t Cares An Boolean incompletely function F is
a mapping F : Bn → B∗ where B∗ ∈ {0, 1,−}. The values 0 and 1 are refered to
as cares and represents a well defined function output. The − is refered to as don’t
care and represents the fact that such output is not defined.

Definition 2.4.5 (Reversible Function Prototype). An incompletely specified func-
tion is a reversible-function prototype (specified by K) if and only if there exists an
Unitary transformation in a Complex Hilbert space Hd, U(.) such that for every
input state ψj ⊂ I (I being the set of all possible binary input vectors width n of the
quantum register)

(2.15) U |ψj〉 = |ψm〉, ∀|ψj〉 ⊂ K ⊂ I; |ψm〉 = |ψl〉

This means that an incompletely specified function is a set of such input-output
states (logic values) that must be realizable by a reversible logic function (a permu-
tative unitary matrix). Thus, such incompletely specified function is realizable as a
reversible function.

To represent incompletely specified functions the KMaps or LUTs can be used.
However, as it will be seen later, there are various ways how to understand and
represent the unknown values that are also called don’t cares. A common way
of representing such unknown values is shown in Table 2.2, where the symbol ’-’
represents the don’t care value.

Another method of representation is the shortened form. For instance the function
defined in Table 2.2 can also be represented as a vector of output values in the natural

2.4. FUNCTION CLASSIFICATION 47

order of the input values combinations(minterms): f = [f(0), f(1), . . . , f(7)] =
[0, 1,−, 1, 0,−,−, 1]. To guarantee reversibility one can also use the output values
of the whole circuit, thus a three-bit circuit will have outputs in the range [0, 7]. The
above vector representation can be transformed to f = [0, 1,−−−, 5, 6,−−−,−−
−, 3] and a possible result will have to contain exactly one of the possible output
values. For instance f = [0, 1,−−−, 5, 6,−−−,−−−, 3]⇒ [0, 1, 4, 5, 6, 7, 2, 3].

Finally, the don’t cares can specify a whole minterm or only a part of it. For
instance, a 3×3 incompletely specified reversible function shown in Table 2.3 shows
an example of don’t cares present in some output states but only on some selected
qubits.

Table 2.3: K-map of an incompletely specified 3 × 3 reversible quantum function
before measurement with don’t cares within single minterms

c 0 1
ab
00 |010〉 |001〉
01 | − 10〉 |1− 0〉
11 | − 0−〉 |1−−〉
01 | − −0〉 | − −1〉

It will be shown later in this book that it is possible to design quantum-reversible
circuits that not only satisfy the above criteria, but also have probabilistic outputs
(on certain or all qubits) along with the deterministic ones. This is done by ei-
ther specifying the output probabilities of output states or by designing particular
measurement operators detecting the specific quantum states.

For instance. Let the output be able to take symbolic quantum state values such as
{0, 1, V0, V1}. In order to distinguish by measurement between states V0 (eq. 2.16)
and V1 (eq. 2.17), one would use a set of basis states to create projective measure-
ment operators. These basis states can be mixed with measurement operators for
states |0〉 and |1〉 to create POV measurement:

(2.16) |V0〉 =
1 + i

2

(

1 −i
−i 1

)

∗
[

1
0

]

=
1 + i

2

[

1
−i

]

and

(2.17) D0 = |V0〉〈V0| =
1 + i

2

[

1
−i

]

∗ 1− i
2

[

−i 1
]

=
1

2

(

i 1
1 −i

)

(2.18) |V1〉 =
1 + i

2

(

1 −i
−i 1

)

∗
[

0
1

]

=
1 + i

2

[

−i
1

]

48 CHAPTER 2. QLS AND SEARCH

and

(2.19) D1 = |V1〉〈V1| =
1 + i

2

[

−i
1

]

∗ 1− i
2

[

1 −i
]

=
1

2

(

−i 1
1 i

)

. It can be easily verified that a qubit in state |V0〉 is detected with the result of
measurement D1 and the quantum state |V1〉 is detected as the result of measurement
D0 (see definition 1.5.2). These operations are explained graphically in Figure 2.14.

1 V1 D1V

0 V0 D0V

= 1

= 1

Figure 2.14: Schematic representation of detecting the quantum states V0 and V1

using the measurement operator specified by the density matrices D0 and D1.

Thus, a quantum reversible function can be generated such that the outputs include
both binary basis states as well as quantum states such as those detected by D0 and
D1. Observe, that this approach is different than measuring quantum states and
obtaining a probability distributions of orthonormal states |0〉 and |1〉. Moreover, it
is a natural extension of the presented ideas that other states such as those based
on measurement in circuits that use gates V,

√
V , 4
√
V , etc can be used to allocate

the don’t cares in incompletely specified reversible functions.

2.4.2 Circuit Identities and Optimizing Transformations

The reduction of quantum circuits uses, among others the well-known rule [NC00]:
[A,B] = AB − BA, AB −BA = 0→ AB = BA.

This reduction rule is illustrated in the quantum circuit from Figure 2.15 which
means, that one can shift left or right pulses or gates for which the above rule holds.

The reduction algorithm uses the following commutation rules(Equations 2.20
- 2.23):

(2.20) [Riα, Riα′] = 0 for i 6= j

2.4. FUNCTION CLASSIFICATION 49

Figure 2.15: Graphical illustration of the rule [A,B] = 0

Rix(±π)Riy(ψ) = Riy(−ψ)Rix(±π)

Rix(ψ)Riy(±π) = Riy(±π)Rix(−ψ)

Rix(±
π

2
)Riy(ψ) = Riz(±ψ)Rix(±

π

2
)

Rix(±
π

2
)Riz(ψ) = Riy(±ψ)Rix(±

π

2
)

Rix(ψ)Riy(±
π

2
) = Riz(±

π

2
)Rix(±ψ)

Rix(ψ)Riz(±
π

2
) = Riz(±

π

2
)Riy(±ψ)

(2.21)

and the relations generated by the cyclic permutation of x y z.

(2.22) [Jij , Ji′j′] = 0

(2.23) [Jij , Ri′z] = 0

Graphically, these rules are represented as in Figure 2.16. If necessary, more
rules can be added to the program, and/or can be made usable only in one direction
(only from left to right or from right to left).

2.4.2.1 Realization of Single Qubit Gates

The most frequently used single-qubit gates in quantum algorithms are the NOT
(N) (also known as Pauli-X, or X [NC97]), Hadamard(H), and phase(P) (also known
as S [NC00]) gates. These gates are the special cases of the single-qubit rotation
operations and are implemented by the rotation pulses as shown in Figure 2.17.

50 CHAPTER 2. QLS AND SEARCH

Figure 2.16: Graphical illustration of some commutation rules for quantum alge-
bra that are used in the tree search-based pulse-level circuit minimization algo-
rithm [IKY02,Lom03,CM04,LKBP06]

N = iRx(π) = i

[

cos
(

π
2

)

−isin
(

π
2

)

−isin
(

π
2

)

cos
(

π
2

)

]

=

[

0 1
1 0

]

=

H = iRy

(

π
2

)

Rz(π) = i

[

cos
(

π
4

)

−isin
(

π
4

)

isin
(

π
4

)

cos
(

π
4

)

] [

e−i
π
2 0

0 e−i
π
2

]

= H

=
(

1√
2

)

[

1 1
1 −1

]

S = ei
φ

2Rz(φ) = ei
φ

2

[

e−i
π
2 0

0 ei
π
2

]

=

[

1 0
0 eiφ

]

= S

Figure 2.17: (a) Calculation of matrix for Pauli X rotation, (b) calculation of matrix
for Hadamard gate, (c) Calculation of matrix for S gate.

2.4. FUNCTION CLASSIFICATION 51

Therefore, the costs of Gates N and P are said to be 1, and that of H is 2, as
in our model of a quantum circuit the quantum cost is the number of elementary
poulses (gates) (see Figure 2.18). It is worthwhile to note that gates with the same
number of input qubits can have and usually have very different costs in practice.
The pulse sequence of a gate is not unique in general.

Rz(π)

Not gate, cost 1Phase gate, cost 1

Hadamard gate, cost 2

Rx(π)

Ry

`

π
2

´

Rz(ψ)

Figure 2.18: Quantum gates realized on the pulse level, they are decomposed to
elementary rotations with respect to axes x, y and z.

It is also worthwhile to note the fact that the N, H and P gates are implemented
up to overall phase. We illustrate an example of this fact for the N gate below in
Figure 2.19. Let us denote a NOT gate such that it is correct to overall phase, by
doing this we have the equations from Figure 2.19.

N = Rx(π) =

[

cos
(

π
2

)

−isin
(

π
2

)

−isin
(

π
2

)

cos
(

π
2

)

]

=

[

0 −i
−i 0

]

= −i
[

0 1
1 0

]

Figure 2.19: Calculation of unitary matrix for inverter. The value of −i = e−i
π
2 is

the phase that is lost in every quantum measurement.

The concepts of rotations and phase can be illustrated using the Bloch sphere,
[NC00].

Before continuing in the multi-qubit and multi-gate representation of the quan-
tum circuit it is important to observe that the circuits represented in this book use
the forward order. In general, a quantum pqrticle evolving in time entails the fact
that when it exists a unitary operation it will be in the state that was generated as
the last one. For instance a quantum sate |0〉 going through a series of single qubit
operations A, B and C will exit the sysem in the state directly generated by the C
operator. this however means that when one does the mathematical computation
the matrices must be multiplied in the reverse order, notably as C ∗ B ∗ A. This
order is refered to as the reverse-order. Thus when analyzing the circuits in the
next section the reader should take into account that the circuits are in the forward
order and thus the matrices must be multiplied form the last gate in the circuit to
the first one.

52 CHAPTER 2. QLS AND SEARCH

2.4.2.2 Realization of Two-Qubit Gates

The most frequently used two-qubit gates are the CNOT and SWAP gates. A
possible pulse sequences for the CNOT gate is given in Equation 2.24. It represents
a pulse sequence for CNOT gate (accurate to phase, where i is the target bit).

(2.24) NOTij = Riz

(

π

2

)

Rjz

(

π

2

)

Rjy

(

π

2

)

Jij

(

−π
2

)

Rjy

(

−π
2

)

Rx

`

π
2

´

Ry

`

π
2

´

Ry

`

−π
2

´

Rz

`

π
2

´

Jij

`

−π
2

´

= 1√
2
(1 − i)

2

6

6

4

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

3

7

7

5

=

Figure 2.20: Representation of the CNOT Gate with EXOR up.

Most equations were verified by us using Matlab and simulation results are
presented for some examples to encourage the reader to do the same when he will
be designing quantum circuits and will need a verification.

Matlab simulation of Figure 2.20 is shown in eq. 2.25
(2.25)

CNOT =

0.7071− 0.7071i 0 0 0
0 0 0 0.7071− 0.7071i
0 0 0.7071− 0.7071i 0
0 0.7071− 0.7071i 0 0

The CNOT from Figure 2.21 is decomposed to pulses in eq. 2.26.
(2.26)

CNOT = R1y

(

π

2

)

R2z

(−π
2

)

R1z

(−π
2

)

J12

(

π

2

)

R1y

(−π
2

)

=

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

Figure 2.21: CNOT gate with EXOR down.

2.4. FUNCTION CLASSIFICATION 53

Step by step Matlab simulation of Figure 2.21 is shown in eq 2.27 to 2.32
(2.27)

R1 =

0.7071− 0.7071i 0 0 0
0 0.7071− 0.7071i 0 0
0 0 0.7071 + 0.7071i 0
0 0 0 0.7071 + 0.7071i

(2.28) R2 =

0.7071 0− 0.7071i 0 0
0− 0.7071i 0.7071 0 0

0 0 0.7071 0− 0.7071i
0 0 0− 0.7071i 0.7071

(2.29) R3 =

0.7071 −0.7071 0 0
0.7071 0.7071 0 0

0 0 0.7071 −0.7071
0 0 0.7071 0.7071

(2.30)

R4 =

0.7071 + 0.7071i 0 0 0
0 0.7071− 0.7071i 0 0
0 0 0.7071− 0.7071i 0
0 0 0 0.7071 + 0.7071i

(2.31) R5 =

0.7071 0.7071 0 0
−0.7071 0.7071 0 0

0 0 0.7071 0.7071
0 0 −0.7071 0.7071

(2.32)

CNOT =

0.7071− 0.7071i 0 0 0
0 0.7071− 0.7071i 0 0
0 0 0 0.7071− 0.7071i
0 0 0.7071− 0.7071i 0

Simulation (eq 2.27 to 2.32) shows R1, R2, R3, R4 and R5 which are the Pauli
Matrices from Figure 2.24 and CNOT results from the Equation 2.25

In Figure 2.21 the upper qubit is the control and lower qubit is target respec-
tively. As shown by eq. 2.26, the cost of a CNOT gate is 5 pulses.

54 CHAPTER 2. QLS AND SEARCH

Another frequently used controlled gate is the controlled-V where V2 is equiv-
alent to a NOT gate. The cost of this gate is also 5 because it can be implemented
by Equation 2.33 (Pulse sequence for Controlled V gate (accurate to phase, where
the target qubit is on the bottom fo the circuit)). The circuit corresponding to the
equation 2.33 is shown in Figure 2.22.

(2.33) CV = R2y

(

π

2

)

R1z

(

π

4

)

R2z

(

π

4

)

J12

(−π
4

)

R2y

(−π
2

)

J12

`−π
4

´

Rz

`

π
4

´

Rz

`

π
4

´

Ry

`

π
2

´

V

=

Ry

`−π
2

´

Figure 2.22: Controlled-V gate realized with 5 pulses.

Once the pulse sequences of the CNOT, controlled-V, and single-qubit gates
are known, the pulse sequence for the other multi-qubit gates can be obtained if the
gate is decomposed to a series of these basic gates.

Cost 5

Cost 5Cost 5

Figure 2.23: SWAP Gate comprised of 3 CNOT gates. The cost of the SWAP should
be then 35 = 15 but it is lower thanks to local optimizations based on quantum
algebra.

The SWAP gate is decomposed of three CNOT gates as shown in Figure
2.23. The pulse sequence of the SWAP gate obtained by replacing each CNOT
gate (EXOR up) and EXOR down CNOT with sequence from Figure 2.21 is given
in Equation 2.34. It has cost 15.

CV =R2y

(

π

2

)

R1z

(−π
2

)

R2z

(−π
2

)

J12

(

π

2

)

R2y

(−π
2

)

×R1y

(

π

2

)

R2z

(−π
2

)

R1z

(−π
2

)

J12

(

π

2

)

R1y

(−π
2

)

×R2y

(

π

2

)

R1z

(−π
2

)

R2z

(−π
2

)

J12

(

π

2

)

R2y

(−π
2

)

(2.34)

2.4. FUNCTION CLASSIFICATION 55

Using the algorithm from [LKBP06] it can be shown that Equation 2.34 can
be reduced to Equation 2.35, and from Equation 2.35, the cost of the SWAP gate
is 11. The circuit corresponding to Equation 2.35 is shown in Figure 2.24.

CV =R2y

(

π

2

)

R2z

(−3π

2

)

R1z

(−3π

2

)

J12

(

π

2

)

×R2y

(

π

2

)

R1y

(−π
2

)

J12

(

π

2

)

R1x

(

π

2

)

×R2x

(−π
2

)

J12

(

π

2

)

R2y

(−π
2

)

(2.35)

J12

`

−π
2

´

=J12

`

−π
2

´

J12

`

−π
2

´

Ry

`

−π
2

´

Rx

`

−π
2

´

Rx

`

π
2

´

Ry

`

−π
2

´

Rz

`

− 3π
2

´

Ry

`

π
2

´

Rz

`

− 3π
2

´

Ry

`

π
2

´

Figure 2.24: Swap Gate with 11 Pulses.

R1

x(φ) =

cosφ

2
0 −isinφ

2
0

0 cosφ
2

0 −isinφ
2

−isinφ
2

0 cosφ
2

0

0 −isinφ

2
0 cosφ

2

R2

x(φ) =

cosφ

2
−isinφ

2
0 0

−isinφ
2

cosφ
2

0 0

0 0 cosφ
2

−isinφ
2

0 0 −isinφ

2
cosφ

2

R1

y(φ) =

cosφ

2
0 −sinφ

2
0

0 cosφ

2
0 −sinφ

2

−sinφ
2

0 cosφ
2

0

0 −sinφ

2
0 cosφ

2

R2

y(φ) =

cosφ

2
−sinφ

2
0 0

−sinφ

2
cosφ

2
0 0

0 0 cosφ
2
−sinφ

2

0 0 −sinφ

2
cosφ

2

R1

z(φ) = e−i
φ

2

1 0 0 0
0 1 0 0
0 0 eiφ 0
0 0 0 eiφ

R2

z(φ) = e−i
φ

2

1 0 0 0
0 eiφ 0 0
0 0 1 0
0 0 0 eiφ

J12(φ) = e−i
φ

2

1 0 0 0
0 eiφ 0 0
0 0 eiφ 0
0 0 0 1

Figure 2.25: Two-Qubit Rotation Operations.

The Rotations matrices for two-qubit gates are given in Figure 2.25. They can
be easily used to verify some of the calculations from this chapter.

56 CHAPTER 2. QLS AND SEARCH

Z

⇔

Z

H HZ

(a)

(b) H H ⇔

⇔

(d)

Figure 2.26: (a) The Controlled-NOT gate realised by controlled-Z gate surrounded
by Hadamard gates, (b) two serially connected Hadamard gate are together equal
to a quantum wire and (c) for controlled Z we can interchange the control qubit and
the target qubit in the control-Z gate.

V H HS

⇔

V †
⇔

H HS−1

(b)

(a)

Figure 2.27: Construction of CV and CV † from Hadamard gate , Phase gate(S) and
its inverse(S-1).

2.4. FUNCTION CLASSIFICATION 57

The two-qubit gates can often be realized as a combination of or as a result
of transformation of a group of other quantum gates. Examples of such transfo-
martions are shown in Figures 2.26, 2.27 and 2.28. The transformations from
Figure 2.26 shows examples of usage the Controlled-Z and the Hadamard gates,
the Figure 2.27 illustrates transformations and equivalences using the Hadamard,
CNOT, Controlled-V and Controlled-S gates and the Figure 2.28 shows transfor-
mations for combinations of the Hadamard gate with Pauli-X, Pauli-Y and Pauli-Z
rotations as well as with the CNOT gate.

H

HH

H

Z

H

H

H

H

H

HH

H

YH HY

H HZ

(a)

(b) ⇔

⇔ ⇔

H H

⇔(c)

(d) ⇔

Figure 2.28: (a) Example of transformation for Feynman gate surrounded by
Hadamard gates, (b)Hadamard gate used as serial connection creates Z gate, (c)Y
gate surrounded by Hadamard creates Y gate, (d) Z gate surrounded by Hadamard
gates creates NOT gate. These rules can be used to prove the correctness of the
Grover Algorithm.

2.4.2.3 Realization of Three-Qubit Gates

The most frequently used three-qubit gates are Toffoli and Fredkin gates, the Miller
gate [Mil02] and Peres gate [Per85] are also used. The circuit diagrams of these four
gates are shown in Figure 2.29. The Peres gate is the cheapest gate found among
those familiar in the universal set of reversible logic gates. It is just like a Toffoli
gate but without the last CNOT gate, as shown in Figure 2.29(a).

The pulse sequence of the Toffoli gate reduced from the circuit in Figure 2.29b
is composed of 15 pulses and contains 5 interaction terms. However, the equiv-
alent sequence of this gate analyzed by the geometric algebra method presented
in [CFH97] is composed of 13 pulses and contains 6 interaction terms. The sequence
we listed in Table 2.4 Toffoli gate is the one with the lower cost. This case indicates
that there is at least one quantum circuit for the Toffoli gate more efficient than
shown in Figure 2.29b, a possibility also exists that the sequences listed in the table
can be reduced further. Although the cost of the Toffoli gate given in Table 2.4

58 CHAPTER 2. QLS AND SEARCH

Figure 2.29: (a)The Peres Gate, (b) The Toffoli Gate, (c)The Fredkin Gate, (d) The
Miller Gate.

is lower than the gate shown in Figure 2.29b, the gate from Figure 2.29b is prac-
tically cheaper than using the method explained in [LKBP06]. It is also possible
that equivalent sequences can have a different number of interaction terms because
Riz(π)Rjz(π)Jij(π) is equal to the identity operation. The minimized Peres gate on
the level of pulses is shown in Figure 2.30.

Ry

`

−π
2

´

Rz

`

−π
4

´

J23

`

−π
4

´

J31

`

π
4

´

Rx

`

−π
2

´

J23

`

π
4

´

Ry

`−π
2

´

Rz

`

− 3π
2

´

Rz

`

−π
4

´

Ry

`

π
2

´

Rz

`

−π
4

´

J12

`

π
2

´

Figure 2.30: Peres Gate with 12 pulses.

The circuit diagram for the ”pulse-level” realization of 3 × 3 Toffoli gate is
shown in Figure 2.31. This is perhaps the exact minimum pulse-level realization.
This fact has been confirmed by our exhaustive search software. If such search would
be completed the cheapest universal gate for quantum computing (most likely Peres
gate) would be proved. An interesting future project is also to find the cheapest
realization of the fundamental Toffoli gate.

The circuit for the minimized ”pulse-level” Fredkin gate is given in Fig. 2.32
and the circuit for the minimized Miller gate is given in Figure 2.33.

Example 2.4.2.1

To explain the fundament of our exhaustive search we can analyze and visualize the
Miller gate’s pulse level optimization. This is graphically represented on Figures
2.34 through Figure 2.36.

2.4. FUNCTION CLASSIFICATION 59

Rz

`

−π
4

´

J23

`

−π
4

´

Rx

`−π
2

´

J23

`

−π
4

´

Rx

`

π
2

´

Ry

`

π
2

´

Rz

`

π
4

´

Ry

`−π
2

´

Rz

`

−π
4

´

J31

`

−π
4

´

J31

`

π
2

´

J31

`−π
2

´

J12

`

π
4

´

Figure 2.31: The Toffoli gates with 13 pulses.

J23

`

π
2

´

J12

`

π
2

´

J23

`

π
4

´

J12

`

π
2

´

J31

`−π
4

´

J23

`

−π
4

´

Ry

`

−π
2

´

Rz

`

− 3π
4

´

Ry

`

π
2

´

Ry

`

π
2

´

Rz

`

− 7π
4

´

Rx

`

−π
2

´

Rz

`

− 3π
4

´

Rx

`

π
2

´

Rx

`

π
2

´

J23

`

π
2

´

Ry

`

−π
2

´

Rx

`

−π
2

´

Rz

`

−π
4

´

Figure 2.32: The Fredkin Gate with 19 pulses.

J12

`

π
2

´

J23

`

π
4

´

J31

`

π
2

´

Rx

`

π
2

´

Rz

`

− 5π
4

´

Ry

`

π
2

´

Rx

`

π
2

´

Ry

`

π
2

´

Rz

`

− 7π
4

´

J12

`

π
2

´

J31

`

π
2

´

J23

`

π
2

´

J23

`

−π
4

´

Ry

`

π
2

´

J31

`−π
4

´

Ry

`−π
2

´

Rx

`−π
2

´

Ry

`

π
2

´

Rx

`−π
2

´

Rz

`−π
4

´

Ry

`−π
2

´

Rx

`−π
2

´

Rx

`−π
2

´

Rz

`−5π
4

´

Figure 2.33: The Miller Gate with 24 pulses.

60 CHAPTER 2. QLS AND SEARCH

First the following are used in this circuit model. NMR Hamiltonian:

(2.36) H =
∑

k

(ωkIkz + ω1(t)[Ikxcosψ(t) + Ikysinψ(t)]) +
∑

j,k

πJjk2IjzIkz

Preferred single-qubit operations:

1. Rotation of qubit k by 90◦ and 180◦ about the x axis.

(2.37) Ikx

(

π

2

)

≡ exp

(

−iπ
2
Ikx

)

(2.38) Ikx

(

π

)

≡ exp

(

−iπIkx
)

2. Rotation of qubit k by 90◦ and 180◦ about the y axis.

(2.39) Iky

(

π

2

)

≡ exp

(

−iπ
2
Iky

)

(2.40) Iky

(

π

)

≡ exp

(

−iπIky
)

3. Rotation of qubit k by θ about the z axis.

(2.41) Ikz

(

θ

)

≡ exp

(

−iθIkz
)

Preferred two-qubit operations

1. Rotations of the states of two-qubit j and k by θ through the evolution by the
coupling term 2IjkIkz .

(2.42) Jjk

(

θ

)

≡ exp

(

−iθ2IjkIkz
)

Any single-qubit rotation can be accomplished in three steps, known as Euler ro-
tations. The Euler rotations are composed of two z-rotations and one y-rotation.
We prefer 90◦ or 180◦ y-rotations and the y-rotations in arbitrary angles can be
decomposed into two 90◦ x-rotations and z-rotation.

These figures can be compared with the macro-level specification of the Miller
gate using 22 quantum gates from Figure 2.29d.

2.4. FUNCTION CLASSIFICATION 61

J31

`

π
2

´

J23

`

π
2

´

J13

`

π
2

´

Ry

`−π
2

´

Rz

`−π
2

´

Ry

`−π
2

´

Rz

`−π
2

´

Rz

`−π
2

´

Ry

`−π
2

´

Rz

`

π
4

´

Ry

`

π
2

´

Rz

`−π
2

´

Ry

`−π
2

´

Rz

`

π
4

´

Ry

`−π
2

´

Ry

`−π
2

´

J23

`−π
4

´

Ry

`

π
2

´

Rz

`

π
4

´

J12

`

π
2

´

Ry

`

π
2

´

Rz

`

π
4

´

Ry

`−π
2

´

Rz

`−π
2

´

Ry

`

π
2

´

J13

`

π
2

´

J23

`

π
2

´

Ry

`

π
2

´

Rz

`−π
4

´

Rz

`−π
2

´

Rz

`−π
2

´

Rz

`−π
4

´

Ry

`−π
2

´

Rz

`−π
2

´

Ry

`

π
2

´

Rz

`−π
2

´

Rz

`−π
2

´

Ry

`−π
2

´

Rz

`−π
2

´

Ry

`

π
2

´

Rz

`−π
2

´

Ry

`

π
2

´

Ry

`−π
2

´

J12

`

π
2

´

J23

`−π
4

´

Figure 2.34: Miller Gate realized with 45 pulses from Equation 2.2.6.8.

Rz (−π)Rx

`

π
2

´

J13

`

π
2

´

J12

`

π
2

´

Ry

`

π
2

´

Rx

`−π
2

´

Ry

`−π
2

´

J23

`

π
4

´

Rz

`−π
4

´

Rz

`−π
2

´

Rx

`

π
2

´

Rz

`−π
2

´

Ry

`

π
2

´

Rz

`−3π
4

´

J12

`

π
2

´

J13

`−π
4

´

Ry

`

π
2

´

Rz

`−π
4

´

Ry

`−π
2

´

J23

`−π
4

´

Rz

`−π
2

´

J31

`

π
2

´

Ry

`−π
2

´

Ry

`−π
2

´

Rx

`−π
2

´

Rz

`−π
2

´

Rz (−π)Ry

`−π
2

´

Rz

`

π
4

´

J23

`

π
2

´

Figure 2.35: Miller Gate realized with 30 pulses from Equation 2.2.6.10.

Rx

`−π
2

´

Ry

`

π
2

´

Ry

`

π
2

´

J12

`

π
2

´

J12

`

π
2

´

Ry

`−π
2

´

Rx

`−π
2

´

Rz

`−π
4

´

Ry

`−π
2

´

Rx

`−π
2

´

Rz

`−5π
4

´

J13

`

π
2

´

Rz

`

5π
4

´

Rx

`

π
2

´

J23

`

π
2

´

J23

`−π
4

´

Ry

`

π
2

´

Ry

`−π
2

´

Rx

`−π
2

´

J31

`

π
2

´

J31

`−π
4

´

Rz

`−7π
4

´

Rx

`

π
2

´

J23

`

π
4

´

Figure 2.36: Optimal Miller Gate Realized with 24 pulses from Equation 2.2.6.11.

62 CHAPTER 2. QLS AND SEARCH

2.4.2.4 Large gates and gates for the ”neighbor-only” technology

Example 2.4.2.2

In some quantum technologies such as ”Linear ion trap” every qubit can communi-
cate only with its neighbors above and below; this increases the cost of gates. If we
have a wire that is ”going through” the Feynman gate (Figure 2.37b), what should
we do? We have to create a sequence of Feynman gates realizing SWAPs (Figure
2.37). The realization of Toffoli gate itself in the neighbor-only technology is shown
in Figure 2.38. Again the SWAP gates should be transformed as in Figure 2.37a.

|x0〉

|x1〉

|x2〉

|0〉

SWAP

|x0〉

|x1〉|x1〉

|x0〉

|x1〉

|x0〉 |x0〉

|x1〉

|x0〉

|x1〉

|x2〉

|0〉

(b)

(a) ≡

≡

Figure 2.37: Transforming a 3 × 3 Toffoli gate with qubit |x1〉 going through. (a)
the SWAP gate, (b) the transformation of the Toffoli gate by surrounding it with
two SWAP gates. Each of these SWAP gates is next transformed as in Figure 2.37a.

V VV †

≡ ≡

V V † V

Figure 2.38: Realization of Toffoli gate in the technology that allows interactions
only between neighbor qubits.

Example 2.4.2.3

∼=

a

b

c

d

a

b

c

d

a

b

c

a⊕ d

Figure 2.39: Transformation of ”big CNOT” gate in the ”neighbors only” quantum
Technology. This is a Feynman gate with two-qubit wires ”going through” it.

2.4. FUNCTION CLASSIFICATION 63

Example 2.4.2.4

A CNOT gate with many qubit wires ”going through” can be realized as shown
in Figure 2.39. Please note the Boolean equations used in the verification process.
As we see from these simple examples, the ”neighbor-only” technologies increase
very substantially the costs of gates and circuits. These effects were entirely not
taken into account by the previous researchers thus the claimed by them ”minimal
circuits” are in fact very far from the minimum when one calculates their costs on
”pulse level” rather than ”abstract mathematical gate level” (like n-input Toffoli).
This is why the concept of affine gates was created [?, ?, ?]. For this is reason in
some variants of GA (Chapter 4 and 5) we take the neighbor only constraint of linear
Ion-Trap.

2.4.3 Quantum gates and circuits on the level of pulses in

Quantum technologies such as NMR and ion traps.

2.4.3.1 NMR-based Quantum Logic Gates

The NMR (Nuclear Magnetic Resonance) technology approach to quantum comput-
ing [Moo65, PW02, DKK03] is the most advanced quantum realization technology
used so far, mainly because it was used to implement the Shor algorithm [Sho94]
with 7 qubits [NC00]. Yet other technologies such as Ion trap [DiV95], Josephson
Junction [DiV95] or cavity QED [BZ00] are being used. The NMR quantum comput-
ing has been reviewed in details in [PW02,DKK03] and for this book it is important
that it was so far the NMR computer that allowed the most advanced algorithm (7
qubit logic operation) to be practically realized and analyzed in details. Thus it is
based on this technology that the constraints of the synthesis are be established in
next chapters for the cost and function evaluation. Some prior work on synthesis
has been also already published [?] and few simple cost functions have been used.

For the NMR-constrained logic synthesis the conditions are:

• Single qubit operations: rotations Rx, Ry, Rz for various degrees of rotation θ.
With each unitary rotation (Rx, Ry, Rz) represented in equation 2.43.

Rx(θ) = e−iθX/2 = cos
θ

2
I − isinθ

2
X =

(

cos(θ
2
) −isin(θ

2
)

−isin(θ
2
) cos(θ

2
)

)

Ry(θ) = e−iθY/2 = cos
θ

2
I − isinθ

2
Y =

(

cos(θ
2
) −sin(θ

2
)

sin(θ
2
) cos(θ

2
)

)

Rz(θ) = e−iθZ/2 = cos
θ

2
I − isinθ

2
Z =

(

e−iθ/2 0
0 eiθ/2

)

(2.43)

64 CHAPTER 2. QLS AND SEARCH

=X iRx

`

π
2

´

Figure 2.40: Single pulse Logic gate - NOT

=H Rz

`

π
´

iRx

`

π
2

´

Figure 2.41: Two pulses Logic gate - Hadamard

• Two-qubit operation; depending on approach the Interaction operator is used
as Izz or Ixy for various rotations θ

Thus a quantum circuit realized in NMR will be exclusively built from single-qubit
rotations about three axes x,y,z and from the two-neighbor-qubit operation of in-
teraction allowing to realize such primitives as CNOT or SWAP gates. Examples
of gates realized using NMR quantum primitives are shown in Figure 2.40 to Fig-
ure 2.43.

Also, the synthesis using the NMR computing model using EM pulses, is
common to other technologies such as Ion Trap [CZ95,PW02] or Josephson Junc-
tion [BZ00]. Thus the cost model used here can be applied to synthesize circuits in
various technologies, all of these technologies having the possibility to express the
implemented logic as a sequence of EM pulses.

We are building large quantum matrices of algorithms from small quantum
matrices of gates (pulses) that are realizable in some selected quantum technologies.
In this section we will concentrate on realization of quantum circuits in two most
advanced as of 2007 quantum realization technologies: that of liquid state nuclear
magnetic resonance (NMR) [CFH97,GC97,JM98,JHM98] and ion traps [LBMW03,
Pau90,Ste97,WMI+98,WBB+02,WH04].

Rz

`

π
2

´

Rx

`

π
2

´

Jzz

`

−π
2

´

Ry

`

π
2

´

Ry

`

−π
2

´

=

Figure 2.42: Detailed Realization of Feynman gate with five EM pulses.

2.4. FUNCTION CLASSIFICATION 65

Rx

`

π
2

´

Jzz

`

−π
4

´

Rz

`

π
4

´

Ry

`

π
4

´

Ry

`

−π
2

´

=

V

Figure 2.43: Five pulses Logic gate - Controlled-V

2.4.3.2 The quantum gates on the level of electromagnetic pulses. The

fundaments.

The total calculation time in quantum computation depends on the number of basic
gates in the series and the number of physical operations required for a quantum
system to implement each gate. Let us denote a series of physical operations as a
sequence of electromagnetic pulses distinguishing it from the series of basic gates,
as the physical operations are either the time evolution of finite duration under the
influence of an externally applied magnetic field, or interactions between qubits. In
quantum computation, the calculation time is a very precious resource due to the
finite coherence time of a quantum system. Therefore, it is important to know the
cost of gates for the successful implementation of an algorithm, and thus for the
future design of a practical quantum computer. Once the pulse sequences for the
single-qubit and two-qubit gates are obtained, the total pulse sequence for a circuit
is given by replacing each elementary gate by the corresponding pulse sequence. The
pulse sequence of more complicated circuits with larger numbers of input qubits can
be obtained in the same way, that is, by finding the quantum circuits composed
of simpler gates and replacing each gate by the corresponding pulse sequence. In
paper [LKBP06] the costs of gates were calculated in terms of numbers of basic
pulses. The software used there calculated the cost of each gate by reducing the
number of pulses in the sequence using the commutation rules of the pulse operations
using nave greedy search algorithm. We demonstrate that these results can be
improved by using the new heuristic search algorithm that will be developed in this
chapter.

The optimized circuits presented in [LKBP06] are not necessarily minimal,
since the heuristic algorithm that found them has no way of knowing if the solutions
found are local or global minima. Therefore, they may not be the true minimal costs
of gates, and the authors claim only to provide the upper bounds as the worst case.
To evaluate the quality of their heuristic algorithm we develop exhaustive search to
be used in comparison of small problems.

The new approach in quantum circuits synthesis introduced in [LKBP06] dif-
fered from the previous publications [SD96,SPIH03,Mil02,MD03] which optimized
the quantum circuit at higher levels of abstraction. It is still rare to see papers in
the literature that would optimize on the level of pulses, but this is in some chapters

66 CHAPTER 2. QLS AND SEARCH

of this book. This is partially possible thanks to our software which is intended to
perform hierarchical top-down synthesis from various levels of specification. In one
synthesis variant, the software will modify the initial non-optimal design by shifting
gates left and right in the circuit and applying quantum logic identities, analogously
to [LKBP06,Lom03], but calculating the combined cost of the operations that are
necessary to build arbitrary quantum circuits instead of the total gate cost (gate
number). The approach from [LKBP06] was next extended to larger circuits, but
with a smaller number of transformations [MD03], the so-called ”template matching
approach”. In next chapters we present software that operates on larger circuits and
with a larger, user-defined numbers of operations.

The most important result from [LKBP06] is a table of realizations of useful
gates and their costs, given in Table 2.4

The basic quantum gates that are used in quantum circuits are Inverter (NOT,
Pauli X rotation), Hadamard, Toffoli, Feynman, CV (controlled square root of NOT)
and CV † (controlled square root of NOT Adjoint gate). These gates are truly quan-
tum and universal . Their subset {NOT,CV, CV †} allows creating all permutative
binary quantum gates (circuits) by their compositions.

2.5 Quantum-Based Synthesis: useful quantum

circuits synthesis problems

As we discussed in Example 1.5.2.1 the EPR circuit [NC00,Gru99] composed of a
Hadamard gate and a Feynman gate realizes entanglement. In an extended circuit
the Hadamard gate can be controlled, which means that when controlled with signal
|0〉, the EPR circuit changes to a single Feynman gate and the entanglement is
removed, thus the circuit’s behavior becomes deterministic. Similarly the controlled
Hadamard and Controlled Square-Root-of-Not (CV) gates can be used as sources
of superposition and randomness. Such circuits find applications as possible robot
controllers [RFW+07,LP07] where randomness of robot behavior is useful.

V V

a

b

e

a = P

b = Q

ab ⊕ e = RV †

Figure 2.44: Toffoli gate realized using 2× 2 controlled quantum gates. When used
as a quantum robot controller, signals a, b and e can come from touch, sound or
other sensors and outputs P, Q and R through measurement units go to motors or
other actuators.

2.5. QUANTUM BASED SYNTHESIS 67

Table 2.4: Comonly used Quantum circuits realized in the Issing model for the NMR
computer.

Gate Name Pulse Representation EM pulses Cost

NOT 1

Phase 1

Hadamard 2

CNOT 5

SWAP 11

Peres 12

Toffoli 13

Fredkin 19

Miller 24

68 CHAPTER 2. QLS AND SEARCH

The realization of the reversible Toffoli gate (Fig. 2.44) using Controlled-NOT
(CNOT), Controlled-V (CV) and Controlled-V† (CV †) gates [BBC+95, HSY+06,
NC00] is another source of inspiration to create quantum circuits. Figure 2.44 shows
that a deterministic behavior of a permutative (classical reversible) circuit is created
using truly quantum gates (such as CV). These gates operate in Hilbert Space and
create intermediate signals that are superposed [NC00]. (By truly quantum gates
we understand those that their unitary matrices are not permutative).

If we would thus measure the data path signal in the lowest qubit in Fig. 2.44
in the middle of this circuit, after two CV gates controlled by inputs a and b
respectively, the behavior would be deterministic for some input signal combinations
and probabilistic for other combinations, leading to very interesting behaviors of
robots such as Quantum Braitenberg Vehicles [RFW+07] controlled by this circuit.

Even more complicated binary quantum circuits (with permutative unitary matrices)
can be composed from gates that are the controlled Pauli X rotations by angles π/k
where k is a power of two. This leads to gates such as NOT - 180◦ rotation, square-
root-of-not - 90◦ rotation, fourth-order-root-of-not - 45◦ rotation, etc. Gates that
rotate by k ∗ (2π/3) where k is an integer are used in ternary quantum logic with
base states |0〉, |1〉, |2〉 [?,?]. These all rotation gates can be controlled by arbitrary
quantum states [MMD06]. When the resultant signal in the data path bit (the
controlled qubit) is an eigenvalue of the unitary transformation(s), the behavior is
deterministic. When it is not, the behavior is probabilistic according to the rules of
quantum measurement [NC00,Gru99]. This means that a system in a superposed
state, when measured, collapses to one of the possible observables given by the
measurement operator. This way, a circuit can be designed from a set of examples
corresponding to the care minterms of a truth table. For instance, referring again to
Quantum Braitenberg Vehicles, value 0 may correspond to sensor conditions when
we want our robot to turn left, and value 1 to the true minterm of input variables (
a positive example) when the robot should turn right. Based on his design goals the
designer specifies examples of robot behaviors as input-output pairs. The software
induces behaviors for all other input states that are possible.

2.5.1 Cost of quantum circuits

Various cost models have been used in QLS to date. Table 2.5 presents a summary
of various costs arranged from the highest gate level to the lowest one (Pulses, Ro-
tations). The variation of the costs is respective to the synthesis level and can be
viewed as a transition cost from Reversible Logic Synthesis to QLS. At the top of
Table 2.5 there is a High Level cost of quantum primitives that has a direct cor-
respondence to reversible gates. In the bottom row there is the cost expressed in

2.5. QUANTUM BASED SYNTHESIS 69

unitary pulses, thus closest to the real quantum cost. Such gates are uniquely quan-
tum and thus they offer simplifications that cannot be achieved on higher levels. In
more details, the first column of the Table 2.5 represents the cost category/level, the
second columns shows some of gates used on this level of logic synthesis. The third
column gives the cost specifications, for instance the first row has a cost increasing
with the number of controls per logic gate as well as with the number of used gates.
Thus, the more controls a gate has the more expensive and difficult it is to realize.
The fourth column shows how the overall cost grows; again in the first row it is
shown that one can take single-qubit controlled-Not and two-qubit controlled-Not
having the basic cost of one, while the cost grows with additional control bits.

Table 2.5: Cost models

Cost Name Example Gates Cost Specification Cost Values

High Level CNOT,CCNOT,etc
cost per control

1,1,2,etc
cost per gate

Standard
W cost per wire 1

CNOT,CCNOT cost per control 2,3,etc.

Restricted
W

cost per wire
1

CNOT,SWAP 2,6,etc.
Low Level Rx(φ),IZZ cost per pulse 1,2

Such a reduced cost can be observed for the SWAP gate. In general it is assumed
that the SWAP gate is made from three Feynman gates, and thus according to
Figure 2.42 it would have a cost of 5 x 3 = 15 EM pulses. However because of the
nature of the pulses it is possible to combine consecutive pulses on the same axis of
the Bloch sphere together and thus minimize the pulse cost to 11 [?]. In this model
the cost is calculated according to the bottom line; for instance the Rx(π) single-
qubit rotation has the same cost as rotation Ry(−3π

4
). Moreover, adjacent quantum

gates located on the same qubits can as well be combined. This will be shown in
Chapter ??. For synthesis this implies that for a particular technology various rules
will constrain the search and thus will allow to adjust the cost functions2.

Definition 2.5.1 (Cost of a Quantum Circuit). cost = f(QcU) =
∑

j U is the sum
of the costs of each operation used for computation in the circuit.

Definition 2.5.1 shows a simple positive cost function monotonic in j.

Example 2.5.1.1 Quantum Logic Primitives

There already exists a popularly used library of quantum primitives that is applied

2Moving pulses and reducing the sequences of pulses is also considered a useful heuristics for
quantum circuits synthesis.

70 CHAPTER 2. QLS AND SEARCH

Figure 2.45: Structure of the Peres gate built from 2× 2 quantum primitives

V
CV CV †

VV V †

V V

(c)

V †
(a)

(b)

Figure 2.46: Structure and minimization stages to reduce the cost of the Fredkin
gate. The top diagram shows the circuit non minimized. The middle diagram
represents the circuit with permuted gates to allow forming larger blocks. The
bottom diagram shows the minimized circuit for which the total quantum cost is
calculated [LPG+04].

by the current quantum logic synthesis algorithms. These primitives are directly
derived from atomic operations in quantum mechanics and constitute the basis for
logic operations in Quantum computing. In general, these gates are from the follow-
ing group: Wire, Inverter (Pauli X), Pauli Y, Pauli Z, Hadamard, Feynman, CV ,
CV †, Peres, Fredkin and Toffoli. In different technologies such as NMR or Ion Trap
these gates have different costs and their optimal realizations are not yet established
due to the fact that quantum computing is still only at its beginning. From the syn-
thesis point of view, different approaches based on various parameters can be taken
to calculate the ”total quantum gate cost” of the quantum circuit which estimates
the real realization cost of a quantum circuit, that is very much dependent on par-
ticular technology or even on particular equipment. We are thus interested only in
the total gate cost which we will call the Quantum Cost for short.

The simplest method is to calculate the total number of 2-qubit primitives [SD96,
LPG+04]. Using this method the Peres gate has the cost of 4 (see Figure 2.45), the
Toffoli gate (see Figure 2.60) has the cost of 5, and the Fredkin gate has also the

2.5. QUANTUM BASED SYNTHESIS 71

cost of 5 (see Figure 2.46).

2.5.2 The Size of Quantum circuits

Beside the cost, a quantum circuit can be described by a size. However, in order to
allow precise definition of the size, first some required concepts need to be defined.

Definition 2.5.2 (Quantum Circuit Primitives). A quantum circuit primitive is
the smallest unit of the synthesis process. As such, a quantum primitive does not
represent a unique gate but rather the smallest unit used to build quantum circuits
in a given synthesis model.

Definition 2.5.3 (Quantum Circuit Block). A block of Quantum Circuit is another
Quantum Circuit or a Quantum Gate of arbitrary width but smaller than n (in which
case the block becomes a segment). Also, a set of quantum gates is a block only if the
contained gates are closed; i.e. the gates are fully enclosed inside of the block (no
input or output vertically). Example of blocks of gates are shown in Figure 2.47.

(a)

V

V †

(b)

Z

H

(c)

Figure 2.47: Example of Blocks of a Quantum Circuit.

With respect to the definition of block, a Segment of a Quantum circuit is
defined by:

Definition 2.5.4 (Quantum Circuit Segment). A Segment of Quantum Circuit is
another Quantum Circuit or a Quantum Gate of width n , such that it is built only
by using Kronecker product between its component gates.

For instance, the three-qubit quantum circuit from Figure 2.48 can be separated
into three segments, each of width three and each being built only by using the
Kronecker product. Observe, that such definition then allows to build the quantum
circuit by using standard matrix product and a set of segments.

The size of the circuit can now be simply defined as:

Definition 2.5.5 (Circuit size). The size of a Quantum Circuit is equal to the
minimal number of segments that a circuit is described by.

72 CHAPTER 2. QLS AND SEARCH

V

V †

(a) (b) (c)

Figure 2.48: Example of Segmentation of a Quantum Circuit. In this case, the
circuit is built as a serial composition of three parallel segments a, b and c.

V

V †

(a) (b) (c) (d)

Figure 2.49: Example of Segmentation of a Quantum Circuit. In this case, the
circuit is built from three parallel segments a, b, c and d.

For instance the circuit from Figure 2.48 has size 3 while the circuit from Figure
2.49 has size 4 despite of having the same cost.

Finally, with the above definitions the overall process of Quantum Logic Synthesis
is described in Definition 2.5.6.

2.5.3 Quantum Logic Synthesis of Combinatorial Circuits

Definition 2.5.6 (Quantum Logic synthesis). The Quantum Logic Synthesis prob-
lem is to find the circuit that has the minimum value of the Quantum cost (whatever
the definition of this cost) for a given truth table, K-map or other specification.

Let |ψ〉 be the quantum register and let G be a set of single-qubit and two-
qubit unitary operators on complex Hilbert space Hn. The process of synthesis of
an appropriate quantum circuit finds the unitary matrix U such that the following
relation:

(2.44) U |ψ〉 → |ψ′〉

is satisfied for every defined care pair (ψ, ψ′) of input-output. Therefore for
each such pair the probability of obtaining the output state from the pair is 100%.

In another synthesis variant, the synthesis process can be expressed as a min-
imization of the given reversible or quantum-reversible function with respect to

2.5. QUANTUM BASED SYNTHESIS 73

• the size of the circuit sQc (the number of elementary operators used),

• the width of the circuit wQc,

• and the error e with respect to the function to be designed as a circuit.

Thus, the QLS process can be written as:

(2.45) SHN (n,G)
min(V (s,w,e))−−−−−−−−→ Qc

where V (s, w, e) is the function to be minimized during the synthesis process.
This function represents the overall cost of the circuit constructed using gates from
set G (a size s of the circuit), with a width w of the circuit and with a given error
e.

No synthesis methods are yet known that would formally consider the trade-off
between the width of the quantum register and the quantum cost.

Constructing universal gates from smaller primitives is only one of several goals
of quantum logic synthesis. As gates are represented by matrices, an infinity of
combinations exists to represent any quantum gate. Also it follows logically that
a gate can be easily invented by just creating a matrix for a particular function.
However, as each gate is in fact one atom or a group of them, a quantum gate
(matrix) must be in principle realized in accord with physical laws of EP’s. But
their costs may differ dramatically.

Reversible functions such as Toffoli or Fredkin are defined as gates and used as
synthesis concepts for convenience, but all quantum gates with more than 2 qubits
are practically not gates but circuits. This restriction is due to the fact that the
state of the art quantum computers allow at present to build only one-qubit and
two-qubit gates (for instance the rotation gates and the interaction gates Jzz in
Figure 2.42).

The search techniques in quantum synthesis can be mainly split into two streams:
algorithmic and heuristic. This is because there are still no tools available that
would allow systematic and theory-grounded algorithm design research in this area.
Results from manual or human-based heuristics can be found in [?,BBC+95,Per00,
SD96] while recent publications [LPG+04, LP02, Rub00, WG98] show algorithmic
rediscovery of the already known gates. Also some interesting circuits have been
discovered and proved optimal by automated processes in [?,HSY+04,YHSP05].

More relevant than in classical circuits synthesis, in quantum circuit synthesis, the
technology influences the synthesis to a much higher extent by specifying the primi-
tives to be used in the synthesis. This can be seen in the fact that various quantum

74 CHAPTER 2. QLS AND SEARCH

technologies use different sets of single-qubit rotations as well as different types of
interaction gates (in this book we restrict our interest to the popular in NMR Jzz
interaction gates). Thus every specific variant of quantum technology will specify
to a much higher extent what type of gates and single-qubit primitives are available
for logic synthesis. This is due to the fact that most of the quantum technologies
are still only at the experimentation level and thus no standards for primitives, cost
or technology-specific constraints have been established.

2.5.4 Quantum Circuits and Sequential Logic

2.5.4.1 Classical vs. Quantum Circuits representation

In classical logic design, one deals with physical elements (CMOS, Transistor Level)
that need to have been given a certain input state, that propagates through the
network of interconnected gates (logic elements) and generates output after the
propagation delay τ . The output will be held as long as the input is held as well.
This means that one can describe a reductionist classical circuit on a 2-dimensional
plane. The Y axis describes the space (representing the width of the circuit) and
allowing for parallel processing on the level of gates. The X axis represents time
and space, as it represents the length of the circuit (propagation delay). This can
be seen in Figure 2.50.

X

Y

Figure 2.50: Space-time representation of a classical logic circuit. Time flows from
left to right along the X axis (Y axis represents space dimension), unless a vertical
interconnection is made in which case time also flows along the Y direction, following
the direction of arrows.

In quantum circuits this representation must be however modified in order to be
correct. Assume a quantum register of width w. While the width of a quantum
circuit still corresponds to the Y axis from the classical circuits, the X dimension

2.5. QUANTUM BASED SYNTHESIS 75

does not mean the space component anymore. Unlike in the classical case, the logic
operation might not be represented by a set of interconnections and logic elements,
but instead it is represented by a set of localized EM pulses sequentially emitted on
the same set of qubits (Figure 2.51).

Observe that this particular representation allows to describe parallelism and serial
operation in quantum computing. In each time slice (called t0, t1, etc.) in Figure
2.51 a set of fully parallel operations on three qubits is represented (such as CNOT
and U1 executed in parallel in slice t3). In contrast, each time slice is a serial
operation with respect to the whole sequence representing the quantum circuit (this
is illustrated by the sequence t0, t1, t2, t3 in Figure 2.51).

The validity of this particular representation is based on the NMR or the Ion Trap
spin state model . For instance in solid-state quantum computing, the individual
qubits can transmit information between neighbors allowing quantum synthesis to
be effectively represented by a two dimensional space-time grid. Moreover, as will
be discussed in details later, the computing procedure on a quantum circuit is a
sequence of the following operations:

1. initialize the whole quantum register to a desired initial state

2. apply the transformation U

3. measure the desired qubits and observe the result.

Despite the different protocols of quantum computing, the main concept used in for
this book is that while in classical logic there is an actual flow of particles through
the gates, in quantum computing the gate is dynamically created by EM pulses
that create a new quantum state. The state remains unchanged until either another
logic operation is applied, the circuit is initialized, the circuit is measured or external
events (noise, decoherence) perturb the quantum state.

2.5.4.2 Quantum Circuit, a natural register.

The conservation of the quantum state implies also the fact that a quantum circuit
can be seen as a state machine in a particular state; i.e. after being initialized to
|φ〉 the state is now U |φ〉, with U being the circuit unitary transformation obtained
by the sequence of EM control pulses. This equivalence (between quantum circuit
and state machine) is related to one of the main problems in FSM design; the state
assignment problem. For instance, assume a FSM with states Q = {q0, q1, q2, q3, q4}
and a state transition function δ(q, s) → q′, the problem is to find such state as-
signment that would minimize the functional logic (the state transition function).

76 CHAPTER 2. QLS AND SEARCH

a

b

c

Y
P

Q

RU1U0

U2

t0 t1 t2 t3 X

Figure 2.51: Space-time representation of a quantum logic circuit without measure-
ment. Time flows from left to right along the X axis while space is represented by
the Y axis. Remark that the physical size of this circuit is equal only to its width.

In this case, there are 5 ≤ 23 states the number of distinct state assignments is
(

8
5

)

= 6720. Therefore, synthesizing a single state machine with a randomly se-

lected assignment does not directly addresses the problem of finding the best state
assignment, but allows to synthesize machines with the same approach for both
quantum circuits and finite state machines. If the state assignment is created as a
byproduct of minimizing the logic circuit cost, as it will be done in our evolution-
ary approaches, this assignment is from definition good, without specifically using
state-assignment methods.

Thus, a given quantum circuit can be considered as a quantum finite state machine
(with determined state encoding), where each iteration of the unitary transformation
U on |ψ〉, will generate the sequence of states given by |ψ′〉 = U |φ〉 starting in the
initial state |ψ0〉. For instance, in the quantum circuit from Figure 2.51, the top
qubit (qubit a) can be considered as the FSM internal state qubit, the qubit b as
the input, and qubit c as the output. In such a case, the computing procedure is
described by the following QFSM realization algorithm:

1. initialize the whole quantum register to a desired initial state only once

2. apply the transformation U representing the desired function f

3. measure the output qubit(s) and observe the result.

4. initialize one input qubit (all next initializations of the qubit register affect
only the input qubit.)

5. go to step 2

Example 2.5.4.1 Simple Quantum Gate as a Quantum Finite State Ma-

chine

2.5. QUANTUM BASED SYNTHESIS 77

Consider the Feynman gate described by the function shown in Table 2.6. Traditionally

Table 2.6: K-map of the Feynman gate

b 0 1
a
0 |00〉 |01〉
1 |11〉 |10〉

the function described by this gate is a change of the values between two-qubits,
however the implementation as a FSM allows a different point of view. In this case,
assume that the FSM is constructed such that one of the qubits is the input (as
described above, it is initialized at each computational step) and the second qubit
represents the state. Moreover, a classical controller is required to control the overall
functioning of the FSM implementation.

Figure 2.52b shows the CNOT gate built as a FSM; the qubit a represents the input
qubit, the qubit b represents the state qubit. The whole setup is controlled by
a classical computer, that can either initialize the quantum register, perform the
quantum computation or measure the desired qubits. This setup allows to initialize
the input qubit a while preserving the state qubit b. This is also shown in Figure
2.52a where the symbols I0 or I1 represent the initialization of the input qubit
a and C represents the computation phase. I0 initializes qubit a to state |0〉, I1
initializes qubit a to state |1〉. During phase C the controls to the gates representing
CNOT are given. Initialization of ”state qubti b” is done only at the beginning of
entire operation (Step 1). Observe that when not initialized, the machine will toggle
between states |11〉 and |10〉.Thus the measurement of qubit b will result in random
result while the measurement of qubit a will result in |1〉.

|00〉 |11〉

|01〉 |10〉

I0, C

I1

I1

I0, C

I

I

M

M

Initialization Measurement

Computing

b = Q

a = Pa

b

(a) (b)

I1

I0 I0 CC

I1

ClassicalComputer

Figure 2.52: (a) - The state diagram for a FSM using a single Feynman Gate, (b) -
schematic representation of a FSM built according to the protocol described in the
text as QFSM Realization Algorithm.

78 CHAPTER 2. QLS AND SEARCH

As the final point of this section let us discuss the implications that the previous
descriptions bear for the logic synthesis:

• Quantum circuits are represented as unitary matrices. The computation in-
cludes the initialization of the whole quantum register before computation to
an arbitrary input state. This corresponds to setting the binary minterm as a
state of the quantum register. The application of U generates the output for
the given input state. Thus a quantum circuit is directly represented by the
unitary transform U.

• Finite State Machines require a register to store the internal state; quantum
computing allows to store in a natural way the complete state (the input
signals, the internal state signals, the output signals) during the computation
process. Thus using a Unitary transform U allows to represent one of many
possible realizations of a given quantum FSM. This FSM has its behavior
described by a set of states and a state transition and output function given
by the unitary matrix U (both the states and the state transition function
must be quantum realizable).

• Thus synthesizing Unitary transformations for circuit design, is a quantum
equivalent of classical logic circuit synthesis methods of both combinational
logic and state machines.

• The synthesis of a quantum circuit can be executed with respect to the ob-
servable output (after the measurement), with respect to the unitary matrix
representing the quantum circuit (before the measurement), or with respect to
new observable values on the circuit outputs (discovery of circuits generating
novel output states) after the measurement.

2.6 Principles of Synthesis for NMR technology

2.6.1 V - Gate, T - Gate and the principle of ”Level gener-

alization”

The principle of creating permutative circuits using the V and the V† gates (Sec-
tion ??) can be extended to SWAP gate. This is possible because SWAP gate has a
NOT 3 sub-matrix as can be seen in equations 2.46 and 2.47. Equation 2.46 repre-
sents the SWAP gate and its Square-root, the T gate. The equation 2.47 represents
the nSWAP (nS) gate and its Square-root.

3Feynman, Fredkin and Toffoli gates are all a combination of the Control signal and the NOT
target bit. Thus they do all have a NOT sub-matrix in their complete unitary matrices

2.6. NMR SYNTHESIS 79

Figure 2.53: SWAP gate broken into two T gates

Figure 2.54: Fredkin gate broken into two Controlled-T (CT) gates

(2.46) S =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

→
√
S = T =

1 0 0 0
0 1+i

2
i−i
2

0
0 1−i

2
1+i
2

0
0 0 0 1

(2.47) nS =

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

→
√
nS = nT =

1+i
2

0 0 1−i
2

0 1 0 0
0 0 1 0

1−i
2

0 0 1+i
2

The nS gate (introduced for the first time in [LP05b]) operation is opposite to the
SWAP gate: while the SWAP gate exchanges the values of the qubits when they
differ (|01〉 and |10〉) the nS gate swaps values when both qubits are equal (|00〉 and
|11〉).
Both of these gates have the V sub-matrix and thus the T gate is a good candidate for
logic synthesis similarly to the powerful CV gate. Again, the right side of equation
2.46 reveals the V core of the T gate. Compared to the CV gate, the matrix is
shifted diagonally left-up. For the nT gate (square-root-of-nSWAP gate) the V core
can be seen dispersed to the four corners of the matrix. From the above it can be
concluded that the following identities hold true:

(2.48) T × T = S, nT × nT = nS, T × nT = nT × T = I

80 CHAPTER 2. QLS AND SEARCH

The function realized by the Controlled-Swap (CS) is a conditional swapping of

two target qubits. For instance let |φ〉 = |110〉+|101〉√
2

be an initial state and applying

CS yields CS|φ〉 → |101〉+|110〉√
2

. The unitary matrix of the T (square-root-of-swap)
is very similar to the matrix of the CV and thus can be expected to have similar
powerful properties when used in synthesis. Thus, replacing the CV gates in the
Peres gate by the CT gate gives a possible lead to explore such scaling properties
(Figure 2.55). This is true for all gates from the Peres family (see below) and thus
also for all families from Figure 2.56. For convenience this property of replacing
gates with larger gates but preserving the relative structure of the circuit will be
called the ’level-generalization’.

c

b

a a′

b′

c′V V V † c

b

a

→

d
T T

a′

a⊕ b

abd

T †

Figure 2.55: The level-generalization of Peres using CT . From a three-qubit circuit
with (CV and CNOT gates) at the left, the four qubit circuit (using CNOT and
CS) is related as its ”Level-generalization”. The logic equation of the generalized
circuit is ab controlled SWAP gate.

2.6.2 Insertion principle

Similar to the previous property for synthesis, we introduce in this section the gen-
eralization of the concept of gate insertion. We will call our new principle the
Peres-Toffoli-Fredkin (PTF) principle. The PTF principle just states that based
on the simple transform required to go from Peres to Toffoli and Feynman, there
can be more similar simple insertion or removal operations giving similar relation
between different ’interesting’ circuits. Using this PTF principle the exploration
of the quantum circuit problem space is well situated to techniques exploring local
groups (blocks) of gates and circuits. This is because the PTF principle can be al-
gorithmically searched using simple exhaustive search. The PTF principle is shown
in Figure 2.56. By adding more Feynman gates, several interesting circuits such as
the Miller gate [LPMP02] can be directly created.

2.6.3 The Divide and Conquer Principle

The last property introduced here is the principle of ”divide and conquer”, ex-
plained on the following example. A single Fredkin gate is broken down into two

2.6. NMR SYNTHESIS 81

V V+V

Peres

Toffoli

Fredkin

Figure 2.56: Peres, Toffoli and Fredkin gates illustrating simple search technique
(PTF principle).

Controlled − T gates and by simple adding of Feynman gates many new circuits
are created. This example is illustrated in Figure 2.57. This new gate generation
principle results from combining and generalizing two previous principles: the level-
generalization and the PTF principle.

Figure 2.57: The ”divide and conquer” circuit synthesis method

The above simple and powerful principles and tools to construct quantum circuits
are sufficient to describe the low level of the GAEX tool (Chapter ??). GAEX is an
evolutionary-exhaustive-transformative software ’explorer’ for the quantum circuit
synthesis. This program is explained in the Section ??.

2.6.4 The Gate-collapsing principle

The last important principle in the QLS is the so called gate-collapsing principle. It
is based on the fact that as each quantum gate is represented by a unitary matrix
and any neighboring gates that are on the same qubits can be collapsed into a single
one. This is shown in Figure 2.58. The requirements for the gate collapsing principle
are the following:

• gates must be neighbors (adjacent)

• gates must be defined on the same qubits

• gates must have the same width

82 CHAPTER 2. QLS AND SEARCH

U

U

U

U0 U

U

U2

U

U

U1

U

U

Figure 2.58: The gate-collapsing principle: quantum gates located on the same
qubits and having no other gates in between can be collapsed into a single one.

The gate-collapsing principle can be also applied in specific cases when some
of the above conditions are not fulfilled. Figure 2.59 shows two such cases (c) and
(d). In order to collapse two non adjacent gates the following conditions must be
fulfilled:

• moving gates left (or right) cannot change the value on any other control qubit
(Figure 2.59a and 2.59b)

• moving gates left (or right) can be done if this gate movement affects only
target qubit (Figure 2.59c and 2.59d)

In both Figures 2.58 and 2.59 the newly created boxes labelled Ux represent
the gates resulting from the collpasing of such gates that result in a different gate
when combined.

2.7 Examples of circuits obtained automatically

for EM-pulses based quantum circuit technol-

ogy using methods from sections 2.5 and 2.6

Now let us continue the discussion of the circuit decomposition into primitives
started earlier in this chapter. Let us consider one practical example. The Toffoli or
Fredkin gates introduced in section 2.5 are both universal quantum logic gates that
are already well-known. They have been built in several quantum and reversible
technologies. The problem discussed here is to find an optimal decomposition of the

2.7. NMR CIRCUIT EXAMPLES 83

U2

U U

U U

U U

U U

U U

(d)(c)(a) (b)

U0

U U

Figure 2.59: The gate-collapsing principle: quantum gates can also be collapsed
if they can be moved and become neighbors without altering the controls of other
quantum gates.

universal gates into smaller parts, especially into the directly realizable quantum
primitives such as Feynman, NOT or Controlled-V (CV) gates. As mentioned ear-
lier, the gates with one and two-qubits have costs directly dependent on the number
of EM impulses. Thus using the result from Section 2.4.3.2, the individual costs for
every single gate are the following: W = 1, Phase = 1, H = 2, CNOT ,CV = 5,
Swap = 11, Peres = 12, Toffoli = 13, Fredkin = 19. Figure 2.60 presents the
well-known realization of Toffoli gate from [SD96]. There are five 2-qubit primitives
here: CV23, CV13, CNOT12, CV

†
23, CNOT12, and the cost is 5 * Cost(CNOT) = 25.

The subscript on each gate name signifies the wires that the gate is connected to.
For instance on a three qubit circuit the gate CV †

23 is controlled by the second qubit
and applies the conditional V † transformation to the third qubit.

The circuit implementing Toffoli gate with the above cost is the solution with the
smallest amount of used gates for the set of quantum gates consisting of CNOT and
Controlled-V/V†. Different minimial circuit for the Toffoli gate is obtained when for
instance the CNOT and the Controlled-Hadamard gate is used [LPK10,LBA+08].
Thus a minimization of a circuit cost with respect to a known minimum will allow
to both find circuits directly reducible to the ideal one or find circuits different
than the ideal circuit. This will be presented later (chapter ??) where we show
circuits that realize the Toffoli gate with the same cost and the same component
gates, as well as circuits realizing the Toffoli gate with a higher cost and with the
realized function being the correct one. Observe that the transformations presented
in these examples all minimize the cost of quantum circuits. Interestingly, these
cost reducing methods allow to transform a circuit from being built using one set of
quantum gates to another gate using a different set of quantum gates. Thus the cost

84 CHAPTER 2. QLS AND SEARCH

Figure 2.60: Toffoli circuit from 2× 2 quantum primitives

Figure 2.61: Toffoli-based Fredkin circuit from Feynman gates and a macro-Toffoli
gate

minimization does not alter only the circuit structure but creates also new quantum
gate primitives that can be used for QLS.

Using the PTF principle (Figure 2.56), we can realize the Fredkin gate from the
Toffoli gate. The Fredkin gate can be synthesized using two Feynman gates and one
Toffoli gate as in Figure 2.61. The cost of this gate is 2*5 + 25 = 35.

Substituting the Toffoli design from Figure 2.60 to Figure 2.61 we obtain the circuit
from Figure 2.46a (top). Now we can apply an obvious EXOR-based transformation
to transform this circuit to the circuit from Figure 2.46b (middle). This is done by
shifting the last gate at right (Feynman with EXOR up) by one gate to the left. The
reader can verify that this transformation did not change logic functions realized by
any of the outputs. Observe that a cascade of two 2*2 gates is another 2*2 gate, so
by combining a Feynman with EXOR-up gate (cost of 5), followed by controlled-V
gate (cost of 5) we obtain a new gate CV with the cost of 5. Similarly gate CV † with
cost 5 is created (the unitary matrices of both CV and CV † are shown in equation
2.49).

CV = [NOTC]× [CV] =

1 0 0 0
0 0 1+i

2
1−i
2

0 0 1−i
2

1+i
2

0 1 0 0

CV † = [NOTC]× [CV †] =

1 0 0 0
0 0 1−i

2
1+i
2

0 0 1+i
2

1−i
2

0 1 0 0

(2.49)

2.7. NMR CIRCUIT EXAMPLES 85

a

c

b

a

c

b

a

c

b

V V V †

VV V †

V
CV

(c)

(a)

(b)

a′

b′

c′

a′

b′

c′

a′

CV †

b′

c′

Figure 2.62: Stages of the minimization of the Miller Gate. Observe that by using the
Peres macro and the collapsing principle the overall cost of the gate is reduced. The
important fact is that the collapsed blocks CV and CV † can be much less expensive
in some technologies than in others.

This way, a circuit from Figure 2.46c (bottom) is obtained with the cost of 25. (This
transformation is based on the method from [?] and the details of cost calculation
of CV and CV † are not necessary here). Thus, the cost of Toffoli gate is exactly
the same as the cost of Fredkin gate, and not half of it, as was previously assumed
and as may be suggested by classical binary equations of such gates.

Encouraged with the above observation, that sequences of gates on the same quan-
tum wires have the cost of only single gate on these wires, we used the same method
to calculate costs of other well-known gates. Let us now investigate a function of
three majorities investigated first by Miller [Mil02,MD03,YZL03]. This gate is de-
scribed by equations: P = ab ⊕ ac ⊕ bc, Q = āb ⊕ āc ⊕ bc, P = ab̄ ⊕ ac ⊕ b̄c.
Where ā is a negation of variable a. Function P is a standard majority and Q, R are
majorities on negated input arguments a and b, respectively [YZL03]. We realized
this function with quantum primitives, found it useful in other designs and thus
worthy to be a stand-alone 3× 3 quantum gate. We call it the Miller gate [YZL03]
and we found a solution that is less expensive than that from [Mil02].

Our realization of the Miller gate requires 4 Feynman gates and a Toffoli gate
[LPG+03] (Figure 2.62a), which would suggest a cost of 4*5 + 25 = 45. Perform-
ing transformations as in Figure 2.62b, we obtain a solution with cost 35. Another
solution obtained by the same method has cost 35 and is shown in Figure 2.62c.
It is also based on simple EXOR transformation (x⊕y) ⊕ z = (x⊕z) ⊕ y applied
to three rightmost Feynman gates from Figure 2.62a, with EXOR in the middle
wire y. Again, the Miller gate, based on its binary logic equations, looks initially
much more complicated than the Toffoli gate, but a closer inspection using quantum

86 CHAPTER 2. QLS AND SEARCH

V V V †

VV V †

a

b

c

d

a

b

d

c

0

a

b

d

c

0

a

d

c

b

0

V V V †

V V V †

(c)

(d)

(b)(a)

CNOT based Toffoli primitives

CNOT based Peres primitives

Figure 2.63: Example of comparison of synthesis using Toffoli and Peres primitives.

logic primitives proves that it is just slightly more expensive. Observe that these
minimization methods are NMR technology related, as for instance in the quantum
dot reversible technology with no ancilla bits the Miller gate is the least expensive
gate. Also, remark that similar rules and software can be used for other quantum
technologies when the basic gates are known.

Finally observe that the main reason for searching for novel quantum primitives is
the minimization of large quantum circuits. For instance Figure 2.63 shows the dif-
ference of cost while building a larger circuit with Toffoli- and Peres-type primitives.
Observe that when built with Toffoli primitives the resulting cost is 12 2∗2 quantum
gates while using the Peres primitives the cost is only 8 2 ∗ 2 quantum gates.

2.7.1 Local, Quantum Gate-Optimizing Transformations

The transformations to optimize quantum circuits are grouped in 12 transformation
sets. There are the following sets:

1. S1. 1-qubit transformations,

2. S2. 2-qubit transformations,

3. S3. 3-qubit transformations,

2.7. NMR CIRCUIT EXAMPLES 87

4. S4. 4-qubit transformations,

5. S5. n-qubit transformations,

6. S6. Ternary transformations,

7. S7. Mixed binary/ternary transformations,

8. S8. Macro-generations,

9. S9. Macro-cell creations,

10. S10. Peres Base transformations,

11. S11. Toffoli Base transformations,

12. S12. Controlled-V Base transformations,

13. S13. Input/Output permutting transformations.

Many transformations are shared between sets. In addition, in each of the
above base sets, there are subsets to be chosen for any particular run of the optimizer
program. Most of them are taken from [Mil02,MD03,DM03, IKY02,SPH02,KL00,
Lom03] but some other are based on our research or general quantum literature.
Different groups of transformations are used in various stages of circuit optimization.

The 1-qubit transformations are related to 1-qubit gates (Figures 2.64, 2.65,
2.66). They can precede and also follow the 2-qubit, 3-qubit and other transforma-
tions. The 2-qubit transformations are for 2-qubit circuits or 2-qubit subcircuits of
larger quantum circuits, similarly the 3-qubit transformations are for 3-qubit circuits
or subcircuits of larger circuits (Figure 2.67). The n-qubit transformations are gen-
eral transformation patterns applicable to circuits with more than 3 qubits. They
are less computationally efficient and they use internally transforms S1 - S4. Macro-
generations are transformations that convert higher order gates such as Fredkin,
Margolus, DeVos or Kerntopf gates to standard bases. Macro-cell creations from set
S9 are inverse to those from set S8.

There are three standard bases of transformations: Toffoli Base, Peres Base,
and Controlled-V Base. In Toffoli Base all permutation gates are converted to X (i.e.
NOT), 3-qubit Toffoli and 2-qubit Feynman gates. This is the standard synthesis
base used by all other authors in literature [Mil02, MD03, DM03, IKY02, SPH02,
NC00]. The Peres Base has been introduced originally by us based on the observation
of superiority of this base in NMR realizations (and perhaps other technologies as
well). It includes only X, 3-qubit Peres and 2-qubit Feynman gates.

88 CHAPTER 2. QLS AND SEARCH

Controlled-V Base is another new base that is very useful to synthesize new
low-cost permutation gates from truly quantum primitives of limited type. This
base includes Controlled-V, Controlled-V†, V, V†, X and Feynman gates. In all
bases the gates like Feynman, Toffoli, Controlled-V are stored in all possible per-
mutations of quantum wires. Thus in 2-qubit base there are ”Feynman EXOR up”
and ”Feynman EXOR down” gates and transformations respective to each of these
gates. For simplification, in the tables below only some of the transformations are
shown, for instance related only to ”Feynman EXOR down” or ”Toffoli EXOR down
gates”. Other transformations are completely analogous. The output permutting
transformations lead in principle to a circuit that has an unitary matrix which is
different from the original unitary matrix. Observe that each transformation can
be applied forward or backward, so the software should have some mechanisms to
avoid infinite loops of transformations. The matrix of the new circuit is the matrix
of the original circuit with permuted output signals. In some applications the order
of output functions is not important, so if the circuit is simplified by changing the
output order, the output permutting transformation is applied.

In addition to operators defined earlier, we define now the following operators:

X,Y,Z defined earlier are Pauli spin matrices and X(Φ),Y (Φ), Z(Φ) are the
corresponding angle-parameterized matrices, giving rotations on the Bloch sphere
[NC00]. P is a phase rotation by Φ/2 to help match identities automatically [Lom03].

The transformation software operates on sequences of symbols that represent
gates and their parts. Symbol * is used to create sequences from subsequences.
This symbol thus separates two serially connected gates or blocks. Numerically,
it corresponds to standard matrix multiplication. Gate symbols within a parallel
block may be separated by spaces, but it is necessary only if lack of space will lead
to a confusion, otherwise space symbol can be omitted. So for instance symbols of
macro-cells should be separated by spaces. There are four types of symbols: simple,
rotational, parameterized and controlled. Simple symbols are just names (here -
single characters, in software - character strings). The names of simple symbols
(used also in other types of symbols) are the following: D - standard control point
(a black dot in an array), E - control with negated input, F - control with negated
output, G - control with negated input and output, X - Pauli-X, Y - Pauli-Y, Z -
Pauli-Z, H - Hadamard, S - phase, T - Φ/8 (although Φ/4 appears in it). Symbols
A, B and C are auxiliary symbols that can match several gate symbol definitions.
They do not correspond to any particular gates but to groups of gates and are
useful to decrease the set of rules and thus to speed-up transformations. Other
simple symbols will be explained below. As we see, characters are used here not
only for gates but also for parts of gates, such as D - standard control used in gates.
Thus we can combine these symbols to create gate descriptions: DX (Feynman with
EXOR down), XD (Feynman with EXOR up), DDX (Toffoli or Toffoli with EXOR

2.7. NMR CIRCUIT EXAMPLES 89

Figure 2.64: 1-qubit transformations for I, A and X groups.

Figure 2.65: 1-qubit transformations for Y and Z groups.

90 CHAPTER 2. QLS AND SEARCH

Figure 2.66: 1-qubit transformations for S, H and parameterized rotation groups.

down), DXD (Toffoli with EXOR in middle), XDD (Toffoli with EXOR up), and so
on. Names of macro-cells are for instance: FE (Feyman), TOD (Toffoli with EXOR
down), SW (swap), FRU (Fredkin controlled with upper wire), MA (Margolus),
KED (Kerntopf with Shannon expansion in lowest wire), etc. Symbols like φ, ψ, π
denote angles and other parameters. Parameterized symbols have the syntax:

simple name [parameter1, · · · , parametern], where parameteri are parame-
ters. For instance, X[4Π/8], Y [3Π/2], Z[Φ], etc. Rotational symbols are composed
of the (simple) rotation operator symbol such as X, Y, Z, or P, and a number. X[Φi],
Y [Φi], Z[φi], P [Φi], where Φi = 4Φ/8∗ i, i = 1, 2, . . . , 7. We assume here that all ro-
tational operators have period 4Π and equal identity when their argument is 0, thus
the choices for ΦI . In these operators the notation is like this, Xr = X[4Π/8 ∗ r],
r = 1, 2, . . . , 7, and so on for Yr, Zr and Pr. Controlled symbols have the syntax
simple name [sequence of simple,rotational or parameterized symbols]

Example 2.7.1.1

D[X ∗ X] is a symbol of a controlled gate that is created from two subsequent
Feynman gates. Observe that DX ∗ CX = D[X ∗ X] = D[I] = II, which means
that two controlled-NOT gates in sequence are replaced by two parallel quantum
wires denoted by I I.

2.7. NMR CIRCUIT EXAMPLES 91

Figure 2.67: Examples of 2-qubit and 3-qubit transformations: (a) 2-qubit trans-
formations, (b) 3-qubit transformations; observe a space between X and DX in rule
R3.57 that signifies that D control the lower X, (c) 4-qubit transformations

92 CHAPTER 2. QLS AND SEARCH

Example 2.7.1.2

D[S ∗ T ∗H] is a sequence S ∗ T ∗H controlled by single-qubit.

Example 2.7.1.3

DD[X1 ∗ Y 2 ∗ Y 2] is a sequence of rotational gates controlled by a logic AND of
two-qubits (this is a generalization of a Toffoli gate).

Observe that controlled symbols are created only as a transitional step during
the optimization process - such gates do not physically exist. Using the concept of
controlled symbols, n-qubit circuits can be optimized using 1-qubit transformations
without duplicating all the 1-qubit identity rules. Similarly the parameterized and
rotational symbols allow the reduction and hierarchization of the set of rules, which
causes more efficient and effective run of the optimization software.

The simplified algorithm SA for performing rule-based optimization of 3-qubit
quantum arrays is the following:

1. 1.Apply all the 1-qubit transformations, until no more applications of such
rules becomes possible.

2. 2.Apply all the 2-qubit transformations and 1-qubit transformations induced
by them (for instance using the controlled symbols).

3. 3.Apply all the 3-qubit transformations until possible.

4. 4.Iterate steps 1,2 and 3 until no changes in the circuit.

5. 5.Apply inverse transformations that locally optimize the array.

6. 6.Repeat steps 1,2,3,4 until possible.

7. 7.Apply inverse transformations that do not worsen the cost of the array.

8. 8.Repeat steps 1,2,3,4 until possible.

Several similar variants of this heuristic algorithm can be created. In general,
none of these versions gives a warranty of the optimal or even sub-optimal solution,
as known from the theory of Post/Markov algorithms.

As an example, we present 1-qubit transformation algorithm A1q:

1. A1. Combine modulo-8 the same types of rotational operators P,X, Y, Z.

• For instance X2 ∗X3 becomes X5, X2 ∗X3 ∗X3 becomes I, and Y 3 ∗
Y 3 ∗ Y 3 becomes I ∗ Y 1 = Y 1.

2.7. NMR CIRCUIT EXAMPLES 93

2. A2. Apply directly applicable rules that do not include symbols A and B.

3. A3. Iterate 1 and 2 until no more changes possible.

4. A4. Starting from the left of the sequence, find a grouping pattern such as
A2 = −BC

5. A5. Substitute symbols X,Y,Z for A,B and C from the pattern.

6. A6. Apply in forward directions the standard simplifying transformations such
as I ∗ A = A

7. A7. Repeat steps A1 to A6 until possible.

Example 2.7.1.4

Given is an identity Y = −X ∗ Y ∗ X. Let us try to verify this identity using
algorithm A1q. We have therefore to simplify the sequence X ∗ Y ∗X. (A1) There
are no patterns of the same rotational operators to combine, (A2) There are no
directly applicable rules, (A4) We take pattern −X ∗ Y and match it with the rule
A2 = C ∗ B. This leads to −Z2 ∗ X. (A1) no, (A2) no, (A3) no, (A4) we find
pattern A2 = CB which leads to −Y ∗X ∗X. (A6) X ∗X is replaced with I, Y ∗ I
is replaced with Y. No further optimization steps are possible, so the sequence was
simplified to −Y , proving that Y = −Y ∗ Y ∗X.

Example 2.7.1.5

Simplify HXH. (A2) Use rule H = X ∗Y 1 twice. This leads to X ∗Y 1 ∗X ∗X ∗Y 1.
(A2) Use rule I = AA in reverse direction. This leads to X ∗Y 1 ∗Y 1. (A1) Y 1 ∗Y 1
is replaced by Y2. This leads to X ∗ Y 2. (A4) Use pattern A = B ∗ C2. This leads
to Z. No further optimization steps are possible. Thus we proved that HXH = Z.
More optimization examples of algorithm SA will be given in the sequel.

In our runs of GA we look for solutions with the accuracy of: (1) permutation of
quantum wires, (2) permutation of inputs, (3) permutation of outputs (transforma-
tion group S13). In addition we can also generate solution sets with accuracy of
inverting input, output or input/output signals (the NPN classification equivalent
circuits). Therefore, for each unitary matrix we generate therefore many logically
equivalent solutions. We can generate solution sets also for the same set of Boolean
functions, or for the same NPN classification class. One interesting aspect of such
approach is that one can create new local equivalence transformations for circuits in
each of these classes. Finding these transformations and applying them exhaustively
to particularly interesting gates leads to levellized ”onion-like” structures of gates,
as the one shown in Figure 2.56. This Figure shows the layered structure of gates
created by adding only Feynman gates to a seed composed of other gate types, in

94 CHAPTER 2. QLS AND SEARCH

this case a Peres gate. The additional gates created by the so-called PTF principle
are the Toffoli, Fredkin and Miller gates. These transformations are used to find
efficient realizations of new gates from known gate realizations.

Bibliography

[ALT08] M. H. S. Amin, P.J. Love, and C.J.S. Truncik. Thermally assisted
adiabatic quantum computation. Phys. Rev. Lett., 100:060503, 2008.

[AOR+02] M.H.S. Amin, A.N. Omelyanchouk, S.N. Rashkeev, M. Coury, and A.M.
Zagoskin. Quasiclassical theory of spontaneous currents at surfaces and
interfaces of d-wave superconductors. Physica B, 318:162, 2002.

[AS04] M.H.S. Amin and A.Y. Smirnov. Quasiparticle decoherence in d-wave
superconducting qubits. Phys. Rev. Lett., 92:017001, 2004.

[BBC+95] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus,
P. Shor, T. Sleator, J. A. Smolin, and Weinfurter H. Elementary gates
for quantum computation. Physical Review A, 52:3457–3467, 1995.

[Ben82] P. Benioff. Quantum mechanical Hamiltonian models of Turing ma-
chines. Journal of Statistical Physics, 29(3):515–546, 1982.

[Boh08] N. Bohr. Niels Bohr Collected Works. Springer, 2008.

[BZ00] A. Blais and A. M. Zagoskin. Operation of universal gates in a solid
state quantum computer based on clean josephson junctions between
d-wave superconductors. Phys. Rev. A, 61:042308, 2000.

[Cas] D. Cassidy. Werner heisenberg: A bibliography of his writings, 1922-
1929, expanded edition.

[CFH97] D. G. Cory, A. F. Fahmy, and T. F. Havel. Ensemble quantum comput-
ing by NMR spectroscopy. Proc. Natl. Acad. Sci. USA, 94:1634–1639,
1997.

[CLRS01] T.H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. The subset-
sum problem, page 1043. MIT Press, McGraw-Hill, 2001.

95

96 BIBLIOGRAPHY

[CM04] E. Curtis and Perkowski M. Transformation based algorithm for ternary
reversible logic synthesis using universally controlled ternary gates,
2004.

[CZ95] J.I. Cirac and P. Zoller. Quantum computation with cold trapped ions.
Physical Review letters, 74(20):4091, 1995.

[Deu85] D. Deutsch. Quantum theory, the Church-Turing principle and the uni-
versal quantum computer. Proceedings of the Royal Society of London
Ser. A, A400:97–117, 1985.

[Dir84] P. A. M. Dirac. The principles of quantum mechanics. Clarendon,
Oxford, 1984.

[Dir95] P.A.M. Dirac. The collected works of P A M Dirac : 1924-1948, R H
Dalitz (ed.). Cambridge, 1995.

[DiV95] P. DiVincenzo. Two-bit gate for quantum computation. Physical Re-
view A, 50:1015, 1995.

[DKK03] L.M. Duan, A. Kuzmich, and H.J. Kimble. Cavity QED and quantum-
information processing with ’hot’ trapped atoms. Physical Review A,
67:032305, 2003.

[DM94] G. De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-
Hill, 1994.

[DM03] G.W Dueck and D. Maslov. Garbage in reversible designs of multiple-
output functions. In Proceedings of RM 2003, pages 162–170, 2003.

[EPR35] A. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical
description of physical reality be considered complete? Phys. Rev.,
47(10):777–780, May 1935.

[Fey85] R. P. Feynmann. Quantum mechanical computers. Optic News, 11:11,
1985.

[FTR07] K. Fazel, M.A. Thornton, and J.E. Rice. Esop-based toffoli gate cas-
cade generation. In IEEE Pacific Rim Conference on Communications,
Computers and Signal Processing,, pages 206 – 209, 2007.

[GAJ06] P. Gupta, A. Agrawal, and N.K. Jha. An algorithm for synthesis of
reversible logic circuits. IEEE Trans. on CAD, 25(11):2317–2330, 2006.

[GC97] N. A. Gershenfeld and I. L. Chuang. Bulk spin-resonance quantum
computation. Science, 275(5298):350 – 356, 1997.

BIBLIOGRAPHY 97

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness, chapter Computers and In-
tractability: A Guide to the Theory of NP-Completeness, page 247. W.
H. Freeman, 1979.

[Gra81] A. Graham. Kronecker Products and Matrix Calculus With Applica-
tions. Ellis Horwood Limited, Chichester, U.K., 1981.

[Gru99] J. Gruska. Quantum computing. Osborne/McGraw-Hill,U.S., 1999.

[HJL+10] R. Harris, M.W. Johnson, T. Lanting, A.J. Berkley, J. Johans-
son, P. Bunyk, E. Tolkacheva, E. Ladizinsky, N. Ladizinsky, T. Oh,
F. Cioata, I. Perminov, P. Spear, C. Enderud, S. Rich, C.and Uchaikin,
M.C. Thom, E.M. Chapple, J. Wang, B. Wilson, M.H.S. Amin, N. Dick-
son, K. Karimi, B. Macready, C.J.S. Truncik, and G. Rose. Experi-
mental investigation of an eight qubit unit cell in a superconducting
optimization processor. Phys. Rev. B, 82:024511, 2010.

[HSY+04] W.N.N. Hung, X. Song, G. Yang, J. Yang, and M Perkowski. Quan-
tum logic synthesis by symbolic reachability analysis. In Proceedings of
DAC, 2004.

[HSY+06] W. N. N. Hung, X. Song, G. Yang, J. Yang, and M Perkowski. Optimal
synthesis of multiple output boolean functions using a set of quan-
tum gates by symbolic reachability analysis. IEEE Transaction on
Computer-Aided Design of Integrated Circuits and systems, 25(9):1652–
1663, 2006.

[IKY02] K. Iwama, Y. Kambayashi, and S. Yamashita. Transformation rules for
designing cnot-based quantum circuits. In Proceedings of DAC 2002,
pages 419–424, New Orleans, Louisiana, 2002.

[Ing76] R.S. Ingarden. Quantum information theory. Reports on Mathematical
Physics, 10(1):43–72, 1976.

[JHM98] A. Jones, R. Hansen, and M. Mosca. Quantum logic gates and nuclear
magnetic resonance pulse sequences. Journal of Magnetic Resonance,
135(2):353–360, 1998.

[JM98] A. Jones and M. Mosca. Implementation of a quantum algorithm on
a nuclear magnetic resonance quantum computer. Journal of Chemical
Physics, 109:16481653, 1998.

98 BIBLIOGRAPHY

[KL00] J. Kim and S. Lee, J-S.and Lee. Implementation of the refined deutsch-
jozsa algorithm on a three-bit nmr quantum computer. Physical Review
A, 62, 2000.

[Koz92] J.R. Koza. Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT Press, 1992.

[Koz94] J.R. Koza. Genetic Programming II: Automatic Discovery of Reusable
Programs. MIT Press, 1994.

[KP06] F. S. Khan and M. A. Perkowski. Synthesis of multi-qudit hybrid and d-
valued quantum logic circuits by decomposition. Theoretical Computer
Science, 3(367):336–346, 2006.

[KPK02] A. Khlopotine, M. Perkowski, and P. Kerntopf. Reversible logic syn-
thesis by gate composition. In Proceedings of IWLS, pages 261–266,
2002.

[LBA+08] B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph,
K. J. Resch, G. J. Pryde, J. L. O’Brien, A. Gilchrist, and A. G. White.
Quantum computing using shortcuts through higher dimensions, April
2008.

[LBMW03] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland. Quantum dynam-
ics of single trapped ions. reviews of Modern Physics, 75(1):281324,
2003.

[LKBP06] S. Lee, S.J. Kim, J. Biamonte, and M. Perkowski. The cost of quantum
gate primitives. Journal of Multiple-Valued Logic and Soft Computing,
12(5-6):561–574, 2006.

[Lom03] Ch. Lomont. Quantum circuit identities, 16 July 2003.

[LP02] M. Lukac and M. Perkowski. Evolving quantum circuit using genetic
algorithm. In Proceedings of the 2002 NASA/DoD Conference on Evolv-
able hardware, pages 177–185, 2002.

[LP05a] M. Lukac and M. Perkowski. Combining evolutionary and exhaustive
search to find the least expensive quantum circuits. In Proceedings of
ULSI symposium, 2005.

[LP05b] M. Lukac and M. Perkowski. Using exhaustive search for the discovery
of a new family of optimum universal permutative binary quantum
gates. In Proceedings of International Workshop on Logic & Synthesis,
Poster Session, 2005.

BIBLIOGRAPHY 99

[LP07] M. Lukac and M. Perkowski. Quantum mechanical model of emotional
robot behaviors. In Proceedings of the International Symposium on
Multiple-Valued Logic, 2007.

[LPG+03] M. Lukac, M. Perkowski, H. Goi, M. Pivtoraiko, C. H. Yu, K. Chung,
H. Jee, B.-G. Kim, and Y.-D. Kim. Evolutionary approach to quan-
tum reversible circuit synthesis. Artif. Intell. Review., 20(3-4):361–417,
2003.

[LPG+04] M. Lukac, M. Perkowski, H. Goi, M. Pivtoraiko, C. H. Yu, K. Chung,
H. Jee, B-G. Kim, and Y-D. Kim. Evolutionary approach to quan-
tum and reversible circuits synthesis. In Artificial Intelligence in Logic
Design, pages 201 – 257. Kluwer Academic Publisher, 2004.

[LPK10] M. Lukac, M. Perkowski, and M. Kameyama. Evolutionary quan-
tum logic synthesis of boolean reversible logic circuits embedded in
ternary quantum space using structural restrictions. In Proceedings of
the WCCI 2010, 2010.

[LPMP02] M. Lukac, M. Pivtoraiko, A. Mishchenko, and M. Perkowski. Auto-
mated synthesis of generalized reversible cascades using genetic algo-
rithms. In Proceedings of Fifth Intern. Workshop on Boolean Problems,
pages 33–45, 2002.

[LSKed] M. Lukac, A. Sasaki, and M. Kameyama. Cellular automata based
robotics architecture for behavioral decision making, to be published.

[Luk09] M. Lukac. Quantum Logic Synthesis and Inductive Machine Learning,
Ph.D. dissertation. PhD thesis, Portland State University, 2009.

[Man80] Y. Manin. Computable and uncomputable. Moscow: Sovetskoye Ra-
dio., -:–, 1980.

[MC] T.S. Metodi and F.T. Chong. Quantum Computing for Computer Ar-
chitects.

[MD03] D. M. Miller and G.W. Dueck. Spectral techniques for reversible logic
synthesis. In Proc. RM, pages 56–62, 2003.

[MDM05] D. Maslov, G. W. Dueck, and D. M. Miller. Synthesis of Fredkin-Toffoli
reversible networks. IEEE Transactions on VLSI, 13(6):765–769, 2005.

[MDM07] D. Maslov, G. W. Dueck, and D. M. Miller. Techniques for the synthesis
of reversible Toffoli networks. ACM Trans. Des. Autom. Electron. Syst.,
12(4):42, 2007.

100 BIBLIOGRAPHY

[Mil02] D. M. Miller. Spectral and two-place decomposition techniques in re-
versible logic. In Proc. Midwest Symposium on Circuits and Systems,
on CD-ROM, August 2002.

[MM06] D. M. Miller and A. T. Mitchell. QMDD: A decision diagram structure
for reversible and quantum circuits. In Proc. 2006 Int. Symposium on
Multiple-Valued Logic, 2006.

[MMD03] D.M. Miller, D. Maslov, and G.W. Dueck. A transformation based
algorithm for reversible logic synthesis. In Proceedings of DAC, 2003.

[MMD06] D. M. Miller, D. Maslov, and G. W. Dueck. Synthesis of quantum
multiple-valued circuits. Journal of Multiple-Valued Logic and Soft
Computing, 12(5-6):431–450, 2006.

[MMK+95] C. Monroe, D. M. Meekhof, B. E. King, W.M. Itano, and D.J.
Wineland. Demonstration of a fundamental quantum logic gate. Phys-
ical Review Letters, 75:4717–4717, 1995.

[MMKW96] C. Monroe, D. M. Meekhof, B. E. King, and D. J. Wineland. A
schrödinger cat superposition state of an atom. Science, 272, 1996.

[MML+98] C. Monroe, B. E. Meekhof, D. M. ind King, D. Leibriefd, W. M. Itano,
and D. J. Wineland. Manipulating the motion of a single trapped atom.
Acc. Chem. Res., 29(12):585590, 1998.

[MOC02] Frederic T. Chong Mark Oskin and Isaac Chuang. A practical ar-
chitecture for reliable quantum computers. IEEE Computer, January
2002:79–87, 2002.

[Moo65] G.E. Moore. Cramming more components onto integrated circuits. In
Electronics, April 19, 1965.

[MP02] A. Mischenko and M. Perkowski. Logic synthesis of reversible wave
cascades. In Proceedings of IWLS, pages 197–202, 2002.

[MV76] P.M. Mathews and K. Venkatesan. A textbook of quantum mechanics.
Tata McGraw-Hill, 1976.

[MWD10] M.D. Miller, R. Wille, and R. Drechsler. Reducing reversible circuit
cost by adding lines. In Proceedings of the ISMVL, 2010.

[NC97] M. A. Nielsen and I. L. Chuang. Programmable quantum gate arrays.
Phys. Rev. Lett., 79:321 – 324, 1997.

BIBLIOGRAPHY 101

[NC00] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, 2000.

[PARK+01] M. Perkowski, A. Al-Rabadi, P. Kerntopf, A. Buller, M. Chrzanowska-
Jeske, A. Mishchenko, M. Md. Azad Khan, A. Coppola, S. Yanushke-
vich, V. Shmerko, and L. Jozwiak. A general decomposition for re-
versible logic. In Proc. RM’2001, August 2001.

[Pau90] W. Paul. Electromagnetic traps for charged and neutral particles. Rev.
Mod. Phys., 62(3):531540, 1990.

[Per85] A. Peres. Reversible logic and quantum computers. Phys. Rev. A,
32(6):3266–3276, 1985.

[Per00] A. Peres. Reversible logic and quantum computers. Physical review,
(32):3266–3276, 2000.

[Pla] M. Planck. Ueber das gesetz der energieverteilung im normalspectrum.
Ann. Physics, 309(3):553–63. English translation: On the Law of Dis-
tribution of Energy in the Normal Spectrum.

[PLKK10] M. Perkowski, M. Lukac, P. Kerntopf, and M. Kameyama. Gpu library
based approach to quantum logic synthesis. In RC workshop, 2010.

[PLSK11] P. Perkowski, M. Lukac, D. Shah, and M. Kameyama. Synthesis of
quantum circuits in linear nearest neighbormodel using positive davio
lattices. facta Universitatis, 24, 2011.

[Pop75] R.P Poplavskii. Thermodynamical models of information processing.
(in Russian). Uspekhi Fizicheskikh Nauk, 115(3):465501, 1975.

[PW02] J. Pachos and H. Walther. Quantum computation with trapped ions in
an optical cavity. Physical Review Letters, 89(18), 2002.

[RFW+07] A. Raghuvanshi, Y. Fan, M. Woyke, A. Kumar, and M. Perkowski.
Quantum robots for teenagers. In Proceedings of the International Sym-
posium on Multiple-Valued Logic 2007, 2007.

[Rub00] B. Rubinstein. Evolving Quantum Circuits using Genetic Programming,
pages 325–334. Stanford University, 2000.

[Rub01] B.I.P. Rubinstein. Evolving quantum circuits using genetic program-
ming. In Congress on Evolutionary Computation (CEC2001), pages
114–121, 2001.

102 BIBLIOGRAPHY

[SBM05a] V. V. Shende, S. S. Bullock, and I. L. Markov. A practical top-down
approach to quantum circuit synthesis. In Proceedings of Asia Pacific
DAC, 2005.

[SBM05b] V. V. Shende, S. S. Bullock, and I. L. Markov. Synthesis of quantum
logic circuits. In ASP-DAC ’05: Proceedings of the 2005 conference on
Asia South Pacific design automation, pages 272–275, New York, NY,
USA, 2005. ACM Press.

[Sch26] E. Schrödinger. Quantisierung als eigenwertproblem. Annalen der
Physik, 79(361), 1926.

[SD96] J. Smolin and D. P. DiVincenzo. Five two-qubit gates are sufficient to
implement the quantum fredkin gate. Physical Review A, 53(4):2855–
2856, 1996.

[Sho94] P.W. Shor. Algorithms for quantum computation: Discrete logarithms
and factoring. In Proc. 35nd Annual Symposium on Foundations of
Computer Science (Shafi Goldwasser, ed.), pages 124–134. IEEE Com-
puter Society Press, 1994.

[SO02] Steven Swanson and Mark Oskin. Towards a universal building block of
molecular and silicon computation. In Workhop on Non-Silicon Com-
puting, held in Conjunction with the International Symposium on High
Performance Computer Architecture, 2002.

[SPH02] V. V. Shende, I. L. Prasad, A.K.and Markov, and J.P. Hayes. Re-
versible logic circuit synthesis. In Proceedings of 11th IEEE?ACM In-
tern. Workshop on Logic Synthesis (IWLS), pages 125–130, 2002.

[SPIH03] V.V. Shende, A.K. Prasad, Markov I.L., and J.P. Hayes. Synthesis of
reversible logic circuits. 22(710), 2003.

[Ste97] A. Steane. The ion trap quantum information processor. 64(623), 1997.

[Sty02] D.F. et al. Styer. Nine formulations of quantum mechanics. 70(288),
2002.

[SZSS10] M. Saeedi, M. S. Zamani, M. Sedighi, and Z. Sasanian. Synthesis of Re-
versible Circuit Using Cycle-Based Approach. ACM Journal of Emerg-
ing Technologies in Computing Systems, 2010.

[vdPIG+06] S.H.W. van der Ploeg, A. Izmalkov, M. Grajcar, U. Huebner, S. Linzen,
S. Uchaikin, Th. Wagner, A.Y. Smirnov, A.M. van den Brink, M.H.S.
Amin, A.M. Zagoskin, E. Il’ichev, and H.-G. Meyer. Adiabatic quantum

BIBLIOGRAPHY 103

computation with flux qubits, first experimental results. IEEE Trans.
App. Supercond., 17,:113, 2006.

[WBB+02] DJ Wineland, M. Barrett, J. Britton, J. Chiaverini, B. DeMarco,
WM Itano, B. Jelenkovi’c, C. Langer, D. Leibfried, V. Meyer, et al.
Quantum information processing with trapped ions, 2002.

[Wey32] H. Weyl. The Theory of Groups and Quantum Mechanics,. Dover
Publications, 1932.

[WG98] C. Williams and A. Gray. Automated design of quantum circuits. In
in Proceedings of QCQC 1998, pages 113–125, 1998.

[WGMD09] R. Wille, D. Große, D.M. Miller, and R. Dreschler. Equivalence check-
ing of reversible circuits. In Proceedings of the ISMVL, 2009.

[WH04] D. Wineland and T. Heinrichs. Ion trap approaches to quantum infor-
mation processing and quantum computing. A Quantum Information
Science and Technology Roadmap, N/A, 2004.

[WMI+98] D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King,
, and D. M. Meekhof. Experimental issues in coherent quantum-state
manipulation of trapped atomic ions. Journal of Research of the Na-
tional Institute of Standards and Technology, 103(259):259, 1998.

[WMI+05] D. Wineland, C. Monroe, W. Itano, B. King, D. Leibfried, D. Meekhof,
C. Myatt, and C. Wood. Experimental primer on the trapped ion
quantum computer. In Quantum Computing: Where Do We Want to
Go Tomorrow? (ed S. L. Braunstein). Wiley-VCH Verlag GmbH & Co.
KGaA, Weinheim, FRG., 2005.

[Yab00] T. Yabuki. Genetic algorithms for quantum circuit design – evolving a
simpler teleportation circuit –. In In Late Breaking Papers at the 2000
Genetic and Evolutionary Computation Conference, 2000.

[YHSP05] G. Yang, W.N.N. Hung, X. Song, and M. Perkowski. Majority-based
reversible logic gates. Theoretical Computer Science, 334(1-3), 2005.

[You95] S. Youssef. Quantum mechanics as an exotic probability theory. In
Workshop on Maximum Entropy and Bayesian Methods, St.John’s Col-
lege, Santa Fe, New Mexico, August 1995.

[YSPH05] G. Yang, X. Song, M. Perkowski, and W. N. N. Hung. The power
of large pulse-optimized quantum libraries: Every 3-qubit reversible
function can be realized with at most four levels. In Proceedings of
Proc. of IWLS, 2005.

104 BIBLIOGRAPHY

[YSPW05] G. Yang, X. Song, M. Perkowski, and J. Wu. Realizing ternary quan-
tum switching networks without ancilla bits. Journal of Physics A,
Mathematical and General, 38:9689–9697, 2005.

[YZL03] W.J. Yang, Y. Zhou, and K.T. Lau. Low power adiabatic programmable
logic array with apdl-2. ELECTRONICS LETTERS, 39(21):2, 2003.

	Quantum Computing Basics and Concepts
	Introduction
	Why quantum computing?
	Mathematical Preliminaries to Quantum Computing
	Bra-Ket notation
	Heisenberg Notation
	Matrix Product
	Kronecker Product
	Matrix Trace

	Quantum Mechanics
	Bohr Particle Model
	Quantum Model of Elementary Particle
	Schrdinger equation
	Superposition of quantum states

	From Quantum Mechanics to Quantum Logic
	Multi-Qubit System
	Simple Projective Measurement
	Density Matrix and POVM

	QLS and Search
	Introduction
	Previous Research
	QL, QG and QLC
	Single-qubit Quantum Gates
	Multi-qubit and Controlled Quantum Gates
	Constructing Quantum Circuits

	Function Classification
	Quantum Karnaugh Maps and Function Definitions
	Circuit Identities and Optimizing Transformations
	Realization of Single Qubit Gates
	Realization of Two-Qubit Gates
	Realization of Three-Qubit Gates
	Large gates and gates for the "neighbor-only" technology

	Quantum gates and circuits on the level of pulses in Quantum technologies such as NMR and ion traps.
	NMR-based Quantum Logic Gates
	The quantum gates on the level of electromagnetic pulses. The fundaments.

	Quantum Based synthesis
	Cost of quantum circuits
	The Size of Quantum circuits
	Quantum Logic Synthesis of Combinatorial Circuits
	Quantum Circuits and Sequential Logic
	Classical vs. Quantum Circuits representation
	Quantum Circuit, a natural register.

	NMR Synthesis
	V - Gate, T - Gate and the principle of "Level generalization"
	Insertion principle
	The Divide and Conquer Principle
	The Gate-collapsing principle

	NMR Circuit Examples
	Local, Quantum Gate-Optimizing Transformations

